共查询到20条相似文献,搜索用时 15 毫秒
1.
Marta Worzakowska 《Journal of Thermal Analysis and Calorimetry》2010,100(2):685-693
A series of N-alkyl-N-alkyl′-pyrrolidinium-bis(trifluoromethanesulfonyl) imide (TFSI−) room temperature ionic liquids (RTILs) has been investigated by means of thermogravimetric analysis (TG), differential scanning
calorimetry, FT-IR spectroscopy, and X-ray diffraction analysis. These compounds exhibit a thermal stability up to 548–573 K.
The mass loss starting temperature, T
ml, falls in a narrow range of temperatures: 578–594 K. FT-IR spectra, performed before and after 24 h isothermal experiments
at 553 and 573 K, have confirmed their great thermal stability. Below the ambient temperature, these compounds exhibit a complex
behavior. N-methyl-N-propyl-pyrrolidinium-TFSI is the sole liquid which crystallizes without forming any amorphous phase even after quenching
in liquid nitrogen. Its crystalline phase has a melting point, T
m, of 283 ± 1 K. When the amorphous solid is heated, the N-butyl-N-ethyl-pyrrolidinium-TFSI presents a glass transition temperature, T
g, at 186 K followed by a cold crystallization, T
cc, at 225 K, and a final T
m at 262 K. The N-butyl-N-methyl-pyrrolidinium-TFSI exhibits a T
g between 186 and 181 K, its cold crystallization leading to two different solid phases. Solid phase I has a melting point
T
I,m = 252 K and phase II, T
II,m = 262 K. When the amorphous phase is obtained at a cooling rate of 10 K/min, its T
cc is 204 K, and a metastable solid phase (III) is obtained which transforms into the phase II at 226 K. However, when the sample
is quenched, the amorphous phase transforms into phase II at T
cc = 217 K and phase I at 239 K. P15-TFSI exhibits the most complicated pattern as, on cooling, it leads to both a crystallized phase at 237 K and an amorphous
phase at 191 K. On heating, after a T
g at 186 K and a T
cc at 217 K, two solid–solid phase transitions are observed at 239 K and 270 K, the final T
m being 279 K. 相似文献
2.
Marta Worzakowska 《Journal of Thermal Analysis and Calorimetry》2010,100(2):599-605
In pseudo bi-component separated-stage model (PBSM), the effect of the TG value at separation points on the kinetic parameters is studied by residual and theoretical analysis. Simultaneously, a new method to determine the point that is the end of 1st reaction or the initial of 2nd reaction is developed. The investigations have improved the calculation procedure of PBSM. We performed thermogravimetry (TG) analysis on oil tea wood with two-step consecutive model and parallel model. Comparison between the results of the two models and improved PBSM shows well agreements. The influence of different separation points on kinetic parameters is presented. 相似文献
3.
E. S. Zhavoronok I. N. Senchikhin E. F. Kolesnikova A. E. Chalykh M. R. Kiselev V. I. Roldugin 《Polymer Science Series B》2010,52(3-4):235-243
Curing of diane and aliphatic epoxy oligomers and their blends is studied by DSC. The use of the traditional dynamic procedure and preliminary heating of the samples at a constant temperature are shown to be convenient for estimating the degree of conversion, glass-transition temperature, and activation energy of curing. Curing of diane, aliphatic epoxy oligomers, and blends with aliphatic amine is adequately described by the Kamal—Sourour equation, and the apparent activation energy of curing is 61.4–55.7 kJ/mol according to the Flynn—Wall—Ozawa model and 54.7–48.5 kJ/mol according to the Kissinger model. This value slightly changes with variation in the content of epoxy oligomers. 相似文献
4.
Seung Han Whan Gun Kim Ho Gyu Yoon Tak Jin Moon 《Journal of polymer science. Part A, Polymer chemistry》1998,36(5):773-783
The investigation of cure kinetics and relationships between glass transition temperature and conversion of biphenyl epoxy resin (4,4′-diglycidyloxy-3,3′,5,5′-tetramethyl biphenyl) with different phenolic hardeners was performed by differential scanning calorimeter using an isothermal approach over the temperature range 120–150°C. All kinetic parameters of the curing reaction including the reaction order, activation energy, and rate constant were calculated and reported. The results indicate that the curing reaction of formulations using xylok and dicyclopentadiene type phenolic resins (DCPDP) as hardeners proceeds through a first-order kinetic mechanism, whereas the curing reaction of formulations using phenol novolac as a hardener goes through an autocatalytic kinetic mechanism. The differences of curing reaction with the change of hardener in biphenyl epoxy resin systems were explained with the relationships between Tg and reaction conversion using the DiBenedetto equation. A detailed cure mechanism in biphenyl-type epoxy resin with the different hardeners has been suggested. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 773–783, 1998 相似文献
5.
Hiroshi Uyama Shigeru Yaguchi Shiro Kobayashi 《Journal of polymer science. Part A, Polymer chemistry》1999,37(15):2737-2745
Lipase-catalyzed polymerization of dicarboxylic acid–divinyl esters with glycols has been performed. The vinyl esters used were divinyl adipate and divinyl sebacate. Lipases derived from Candida antarctica, Mucor miehei, Pseudomonas cepacia, and P. fluorescens showed high catalytic activity toward the present polymerization. Effects of solvent, reaction temperature, and enzyme amount were systematically investigated. A combination of divinyl adipate, 1,4-butanediol, and P. cepacia lipase afforded the highest molecular weight (2.1 × 104). The yield of the polymer from divinyl sebacate was higher than that from divinyl adipate, whereas the opposite tendency was observed in the polymer molecular weight. Methylene chain length of α,ω-alkylene glycol also affected the polymerization behavior. The enzymatic polymerization of divinyl sebacate with cis-2-butene-1,4-diol and 2-butyne-1,4-diol resulted in the polymer containing unsaturated group in the polymer backbone. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2737–2745, 1999 相似文献
6.
The effects of hyperbranched polyesters on the cure kinetics of diglycidyl ether of bisphenol A (DGEBA) in the presence of m‐phenylene diamine were investigated with nonisothermal differential scanning calorimetry. The results showed that the addition of hyperbranched polyesters enhanced the cure reaction of DGEBA with m‐phenylene diamine, and this resulted in a reduction of the peak temperature of the curing curve and the activation energy because of the low viscosity and large number of terminal hydroxyl groups. However, when linear poly(ethylene glycol) was added, the activation energy of the blends also slightly decreased, whereas the peak temperature of the curing curve increased. The curing kinetics of the blends were calculated by the isoconversional method of Málek. The two‐parameter autocatalytic model (i.e., the ?esták–Berggren equation) was found to be the most adequate for describing the cure kinetics of the studied systems. The obtained nonisothermal differential scanning calorimetry curves showed results in agreement with those theoretically calculated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2649–2656, 2004 相似文献
7.
Dong-Won Kim Jung-Ki Park Myoung-Seon Gong 《Journal of Polymer Science.Polymer Physics》1995,33(9):1323-1331
A series of aliphatic polyesters of sebacoyl chloride and poly(ethylene glycol) containing a different number of ethylene oxide groups was synthesized and characterized. These polyesters were complexed with lithium perchlorate to obtain a new class of polymer electrolyte. The relationships between the structure and properties of these polymer electrolytes were investigated. The main factor that affects the ionic conductivity in these systems was found to be the solvating capacity of the polyester for the lithium salt. These polymer electrolytes showed ionic conductivities up to 10?5 ? 10?4 S/cm at 25°C. The mechanical strength was improved by cross-linking, and the cross-linked polyester complexed with a LiCIO4 salt showed an ionic conductivity of 2 × 10?5 S/cm at room temperature. 7Li NMR spin-spin relaxation and dielectric relaxation studies were also carried out to investigate the local environments and dynamics of ions in the polymer electrolytes. © 1995 John Wiley & Sons, Inc. 相似文献
8.
Xudong Lou Christophe Detrembleur Philippe Lecomte Robert Jrme 《Journal of polymer science. Part A, Polymer chemistry》2002,40(14):2286-2297
A pure unsaturated cyclic ester, 6,7‐dihydro‐2(3H)‐oxepinone (DHO2), was prepared by a new synthetic route. The copolymerization of DHO2 with ?‐caprolactone (?CL) was initiated by aluminum isopropoxide [Al(OiPr)3] at 0 °C as an easy way to produce unsaturated aliphatic polyesters with nonconjugated C?C double bonds in a controlled manner. The chain growth was living, as certified by the agreement between the experimental molecular weight at total monomer conversion and the value predicted from the initial monomer/initiator molar ratio. The polydispersity was reasonably low (weight‐average molecular weight/number‐average molecular weight ≤ 1.2). The homopolymerization of DHO2 was, however, not controlled because of fast intramolecular transesterification. Copolymers of DHO2 and ?CL were quantitatively oxidized with the formation of epoxides containing chains. The extent of the epoxidation allowed the thermal properties and thermal stability of the copolyesters to be modulated. The epoxidized copolyesters were successfully converted into thioaminated chains, which were then quaternized into polycations. No degradation occurred during the chemical modification. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2286–2297, 2002 相似文献
9.
Robert Jr
me David Mecerreyes Dong Tian Philippe Dubois C. J. Hawker M. Trollsas J. L. Hedrick 《Macromolecular Symposia》1998,132(1):385-403
Combination of the living ring-opening polymerization (ROP) of ε-CL and lactides with the “controlled” free radical polymerization of styrene and methacrylic monomers is a versatile strategy for the synthesis of well-defined block and graft copolymers. In this respect, the dual “living” polymerization strategy in which two different functional groups on a single molecule used to initiate the two controlled mechanisms is particularly efficient. Combination of ROP and step-growth polymerization is another versatile methodology for the preparation of a large variety of new materials, e.g. polyimide nanofoams, polyester/silica hybrid materials and star and branched polyesters by dendritic initiation. 相似文献
10.
Alliny F. Naves Henrique T. C. Fernandes Ana P. S. Immich Luiz H. Catalani 《Journal of polymer science. Part A, Polymer chemistry》2013,51(18):3881-3891
The search for materials produced from renewable sources aiming at the substitution of petroleum‐based derivates is an area of intense investigation. In this work, the enzymatic copolymerization of isosorbide or isomannide with diethyl adipate and fractions of different unsaturated diesters (diethyl itaconate, diethyl fumarate, diethyl glutaconate, and diethyl hydromuconate) were examined using CAL‐B as catalyst. The polyesters prepared using one‐step syntheses were characterized by SEC, NMR, and MALDI‐TOF MS. In addition, syntheses with linear diols were carried out in bulk to evaluate the reactivity of cyclic diols in producing unsaturated polyesters using enzymatic catalysis, as well as to evaluate the occurrence of addition side reactions on the double bonds. Isosorbide and isomannide yielded unsaturated polymers with values in the order of 4,000‐16,000 when fumarate or glutaconate esters were added in 5 mol % ratio against adipate. In all cases MALDI‐TOF confirmed the presence of unsaturated units. Although these polyesters have unreacted double bonds they are prone to crosslinking and ready to further functionalization, like anchoring bioactive molecules. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3881–3891 相似文献
11.
Hong Chengming Wang Xiaojun Pan Zhigang Zhang Yifan 《Journal of Thermal Analysis and Calorimetry》2015,120(1):427-438
Journal of Thermal Analysis and Calorimetry - The saturated aliphatic binary carboxylic acid, including succinic acid, adipic acid and sebacic acid, were used to improve the curing process of... 相似文献
12.
Voronov A Vasylyev S Kohut A Peukert W 《Journal of colloid and interface science》2008,323(2):379-385
The surface active properties of aqueous solutions of invertible amphiphilic alternated polyesters differing by hydrophilic-lipophilic balance (HLB) and molecular weight have been determined over the wide concentration range. The polyesters are based on poly(ethylene glycol) (PEG) of two molecular weights and aliphatic dicarboxylic acids (decanedioic and dodecanedioic). The surface activity of the polyesters and their ability to form micellar assemblies (which was recently shown for organic solvents) has been confirmed in water. The central role of the balance of hydrophilic to hydrophobic groups ratio in the formation of polymeric arrangements having hydrophobic pockets and external hydrophilic shell has been shown. The effect of molecular weight has been found considerable as well. Two changes in slope have been observed for the more hydrophobic polyesters in the surface tension vs log concentration curve. The change at low concentration is believed to originate from the formation of polyester assemblies with a hydrophobic interior and hydrophilic exterior due to the interaction of hydrophobic fragments and macromolecular flexibility. The higher concentration region exhibits behavior consistent with a cmc, which was confirmed by additional dye solubilization experiments. Molecular structure of the polyester micelles is determined by the solubilization of a solvatochromic dye. The experiment confirmed that micellization of polyesters is accompanied by the association of more hydrophobic (aliphatic) constituents forming the micelle interior. The hydrophilic fragments (ethylene oxide groups) are involved in the formation of micelle exterior. 相似文献
13.
Chinnaswamy Thangavel Vijayakumar Palanichamy Sivasamy 《European Polymer Journal》2007,43(7):3028-3035
Polyesterification of adipic acid and maleic anhydride with 1,3-bis(2-hydroxyethoxy)benzene (HER) in the presence of toluene-4-sulphonic acid was carried out using melt condensation technique. The structural characterization of the synthesized polyesters had been carried out using Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopic methods. The thermal properties of the polyesters were studied using differential thermal analysis (DTA) and thermogravimetric analysis (TGA). The activation energies for the thermal degradation of the polyesters were calculated by the method of Dharwadkar and Kharkhanavala and discussed. The char residue value at 600 °C indicated maleic anhydride based polyester is thermally more stable compared to the adipic acid based polyester. The mechanism of degradation of these polyesters is discussed. 相似文献
14.
Various types of aliphatic polyesters were prepared by both biosynthetic and chemosynthetic methods, and their biodegradation tests were carried out under aerobic conditions in the river water. Biodegradabilities of polyester films were evaluated by monitoring the time-dependent changes in the biochemical oxygen demand (BOD), weight loss (erosion) of polyester film, and dissolved organic carbon concentration (DOC) of test solution. The microbial copolyesters were degraded in the river water at a rapid rate, and the weight-loss- and BOD-biodegradabilities of the majority of biosynthetic polyesters were 100 % and 80±5 % for 28 days, respectively. In contrast, the biodegradabilities of chemosynthetic polyesters were strongly dependent of the chemical structure of monomeric units. 相似文献
15.
16.
In the present review the findings concerning the effect of nanofillers to biodegradation and enzymatic hydrolysis of aliphatic polyesters were summarized and discussed. Most of the published works are dealing with the effect of layered silicates such as montmorillonite (unmodified and modified with organic compounds), carbon nanotubes and spherical shape additives like SiO2 and TiO2. The degradation of polyester due to the enzymatic hydrolysis is a complex process involving different phenomena, namely, water absorption from the polyesters, enzymatic attack to the polyester surface, ester cleavage, formation of oligomer fragments due to endo- or exo-type hydrolysis, solubilization of oligomer fragments in the surrounding environment, diffusion of soluble oligomers by bacteria and finally consumption of the oligomers and formation of CO2 and H2O. By studying the published works in nanocomposites, different and sometimes contradictory results have been reported concerning the effect of the nanofillers on aliphatic polyesters biodegradation. Most of the papers suggested that the addition of nanofillers provokes a substantial enhancement of polyester hydrolysis due to the catalyzing effect of the existed reactive groups (–OH and –COOH), to the crystallinity decrease, to the higher hydrophilicity of nanofillers and thus higher water uptake, to the higher interactions, etc. However, there are also some papers that suggested a delay effect of nanofillers to the polyesters degradation mainly due to the barrier effect of nanofillers and the lower available surface for enzymatic hydrolysis. 相似文献
17.
18.
19.
A. A. Grishanov 《Polymer Science Series D》2014,7(2):118-121
This paper presents the results of research on creating composites using the DEG-1 water-soluble epoxy resin cured by polyethylenepolyamine. It was shown that the obtained composites, in which quartz sand or Portland cement were used as the filler, have high damping properties, rigidity, and bending compressive strengths. 相似文献
20.
Poly(ethylene succinate) and poly(butylene succinate) are synthetic biodegradable polymers, and much attention is paid to study the properties of pure polymers and the polymers modified by different comonomers and filling materials. The literature data on the physical properties of these polymers vary widely depending on their method of preparation and subsequent modifications. Most of the studies deal with low- and moderate-molecular-weight polymers or commercial grade polymers, modified by different comonomers and chain-extension agents. The data on pure high-molecular-weight polymers are scarce. In this work, we have prepared high-molecular-weight (MW range of (1.4–1.8) × 105) poly(ethylene succinate) and poly(butylene succinate) by direct polycondensation at 200°C in a nitrogen flow without chain-extension agents. We have further studied the properties of pure polymers and examined the effect of different fillers (carbon nanotubes, SiO2, Aerosil®) on the mechanical and physical properties of these polymers. Because of high-molecular-weight, the polymers possess increased tensile and storage moduli and thermostability. Even very low filler contents (up to 1 wt %) have a pronounced influence on the polymer properties: the polymer tensile and the storage modulus increases, the elongation at break decreases, and the thermal stability of the polymers decreases slightly. The effects of fillers are less pronounced compared with those for low- and moderate-molecular-weight polymers. When mixed together, poly(ethylene succinate) and poly(butylene succinate) crystallize independently from each other as evident from the mechanical and thermal analysis data. 相似文献