首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of the low molecular weight polyhydroxybutyrate (LMWPHB) and LMWPHB plasticized polyhydroxybutyrate (PHB) are studied using differential scanning calorimetry (DSC), thermogravimetric analysis, wide-angle X-ray diffraction (WAXD), polarized optical microscope (POM), mechanical, and biodegradation tests. The results of DSC, WAXD, and POM indicate that LMWPHB has a lower glass transition temperature (T g), crystallinity, crystallization rate, melting temperature (T m), and crystal size than PHB due to its much smaller molecular weight. The tensile strength, T g, T m, crystallinity, crystallization rate, and thermal stability of LMWPHB plasticized PHB decrease, while the flexibility and biodegradation rate increase with the increasing content of the added LMWPHB. It is confirmed that LMWPHB can be used to improve the brittleness and control the biodegradation rate of PHB.  相似文献   

2.
采用DSC、TGA、POM和WAXD等方法对聚 β 羟基丁酸酯 (PHB)及其接枝顺丁烯二酸酐共聚物 (PHB g MA)的结晶行为、热稳定性和生物降解特性进行了研究 .结果表明接枝产物的热稳定性明显优于PHB ,热分解温度提高了 2 0余度 ;结晶行为发生很大的变化 .结晶速率减小 ,结晶温度降低 ,冷结晶温度升高 ,球晶的织态结构也随着MA接枝量的变化发生明显变化 ,并且接枝MA促进了PHB的生物降解  相似文献   

3.
通过溶液浇铸法制备不同组分的左旋聚乳酸(PLLA)和聚(L-2-羟基-3-甲基丁酸)(PL-2H3MB)共混物.运用差示扫描量热仪(DSC)、偏光显微镜(POM)、广角X射线衍射(WAXD)和热重分析仪(TGA)分析共混物的结晶、熔融行为和热稳定性.通过观察到DSC加热曲线中新的熔融峰判断PLLA和PL-2H3MB共晶...  相似文献   

4.
The poly(3-hydroxybutyrate)(PHB)/poly(ethylene glycol)(PEG) grafting copolymer was successfully prepared by PHB and acrylate groups ended PEGM using AIBN as initiator. The crystallization behavior, thermal stability and environmental biodegradability of PHB/PEG grafting copolymers were investigated with differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and Biodegradation test in vitro. In the results, all the grafting copolymers were found to show the X-ray diffraction arising from the PHB crystal lattice, while none of the PEG crystallized peaks could be found even though the graft percent reached 20%. This result indicated that PEG molecules were randomly grafted onto PHB chain. The thermal properties measured by DSC showed that the melting temperature(Tm) and glass transition temperature (Tg) were both shifted to lower temperature with the graft percent increasing, and this broadened the narrow processability window of PHB. According to TGA results, the thermal stability of the grafting copolymers is not changed compared to pure PHB. From the biodegradation test, it could be concluded that degradation occurred gradually from the surface to the inside and that the degradation rate could be adjusted by the PEG grafting ratio. In another words, the biodegradation profiles of PHB/PEG grafting copolymer can be controlled. These properties make PHB/PEG grafting copolymer have promising potential applications especially in agriculture fields.  相似文献   

5.
The influence of thermal history on morphology, melting, and crystallization behavior of bacterial poly(3‐hydroxybutyrate) (PHB) has been investigated using temperature‐modulated DSC (TMDSC), wide‐angle X‐ray diffraction (WAXRD) and polarized optical microscopy (POM). Various thermal histories were imparted by crystallization with continuous and different modulated cooling programs that involved isoscan and cool–heat segments. The subsequent melting behavior revealed that PHB experienced secondary crystallization during heating and the extent of secondary crystallization varied with the cooling treatment. PHB crystallized under slow, continuous, and moderate cooling rates were found to exhibit double melting behavior due to melting of TMDSC scan‐induced secondary crystals. PHB underwent considerable secondary crystallization/annealing that took place under modulated cooling conditions. The overall melting behavior was interpreted in terms of recrystallization and/or annealing of crystals. Interestingly, the PHB analyzed by temperature modulation programs showed a broad exotherm before the melting peak in the nonreversing heat capacity curve and a multiple melting reversing curve, verifying that the melting–recrystallization and remelting process was operative. WAXRD and POM studies supported the correlations from DSC and TMDSC results. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 70–78, 2006  相似文献   

6.
As a novel toughening agent, thermotropic liquid crystalline polymers (TLCPs) possess excellent properties of high strength, high modulus, low expanding coefficient, and high thermal stability. In this study, a thermotropic liquid crystalline poly(ester-imide) derived from N,N’-hexane-1,6-diylbis(tri-millitimide) (IA6), p-hydroxylbenzoic acid (PHB), and 4,4’-dihydroxybenzophenone (DHBP) was synthesized by the Higashi's direct polycondensation method. The structure and properties of the TLCP were studied using Fourier transformed infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetic analyses (TGA), polarized light microscopy (POM), and wide angle X-ray diffraction (WAXD). The results revealed that the synthesized polyester-imide is a nematic TLCP with good thermal stability and its starting decomposition temperature is up to 439°C. Additionally, polymer blends of phenol-formaldehyde (PF) resin with different contents of polyester-imide were prepared and characterized by POM and WAXD. POM results demonstrated that two-step blending is an ideal method for blending TLCP and PF resin. By this method, continuous filamentous stripes can be clearly observed at 230°C for TLCP/PF blend of 10 wt% poly(ester-imide).  相似文献   

7.
聚β-羟基丁酸酯和聚ε-己内酯的酯交换反应   总被引:5,自引:0,他引:5  
以辛酸亚锡为催化剂 ,研究了聚 β 羟基丁酸酯 (PHB)与聚ε 己内酯 (PCL)在液相条件下的酯交换反应 .讨论了反应时间 ,反应温度和催化剂浓度对酯交换反应的影响 .采用1 3C NMR ,FTIR ,DSC ,WAXD和TGA等方法对PHB和PCL共聚酯 (PHB co PCL)的结构进行了表征 ,并对其结晶行为、晶体结构和热稳定性进行了研究 .结果表明 ,通过酯交换反应 ,所得到的共聚酯为嵌段共聚物 .提高反应温度和延长反应时间有利于酯交换反应的发生 .随着酯交换量的增加 ,PHB co PCL的结晶行为发生很大的变化 .但是 ,PHB co PCL晶体结构并没有因为PCL链段的引入而发生变化 ,而且它的热稳定性在空气气氛中略有提高  相似文献   

8.
In this work, new polyoxymethylene (POM)/hydroxyapatite (HAp) nanocomposites for long‐term bone implants have been obtained via extrusion and injection molding processes and characterized by differential scanning calorimetry (DSC), temperature‐modulated DSC (TMDSC), scanning electron microscopy (SEM), transmission electron microscopy (TEM), wide‐angle X‐ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and tensile mechanical and in vitro stability tests. Based on the DSC results, it was found that the degree of crystallinity increases for POM/0.5% HAp sample and decreases for POM/1.0% HAp and POM/2.5% HAp. SEM and TEM observations for POM/HAp nanocomposites indicated that the dispersion of HAp in the polymer matrix was uniform and the diameter of the HAp particles was less than 100 nm for most of them. Young's modulus increases with increasing HAp concentration, whereby elongation at break decreases. On the contrary, HAp concentration does not have a significant influence on the tensile strength. TG results show that for POM/0.5% HAp, POM/1.0% HAp, and POM/2.5% HAp, thermal stability slightly increases in comparison to pure POM, whereas for POM/5.0 HAp and POM/10.0% HAp, lower thermal stability was observed. In vitro data reveal that with an increase of HAp content, bioactivity of nanocomposites increases; a good in vitro chemical stability of POM and POM nanocomposites was confirmed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Microwave-assisted chemical modification of lignin was achieved through esterification using maleic anhydride. Modified lignin (ML) was blended in different proportions up to 25 mass% with polypropylene (PP) using Brabender electronic Plasticorder at 190 °C. The structural and thermal properties of blends were investigated by thermogravometric analysis (TG), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and scanning electron microscopy (SEM). TG analysis showed increased thermal stability of blends due to antioxidant property of ML, which opposed oxidative degradation of PP. DSC analysis indicted slight depression in a glass transition temperature and melting temperature of blends due to partial miscible blend behavior between PP and ML. All blends showed higher crystallization temperatures and continuously reducing percentage crystallinity with increasing ML proportion in the blends. WAXD analysis indicated that PP crystallized in β polymeric form in addition to α-form in the presence of ML. However, proportion of β-form did not show linear relation with increase in ML proportion, thus ML acts as β nucleating agent in the PP matrix. SEM analysis showed good dispersion/miscibility in PP matrix indicating modification in lignin is useful.  相似文献   

10.
Poly(3-hydroxybutyrate), PHB has been structurally modified through reaction with maleic anhydride, MA. Transesterification reaction was carried out fixing the PHB and MA and besides time and temperature the concentration of the triethylamine (used as catalyst) was changed. Glass transition, melting and crystallization temperature obtained from DSC curves and thermal degradation temperatures obtained from TG traces were used to evaluate the influence of the reaction conditions on the modification of PHB according to factorial design. On the base of the results the optimum conditions are to perform the PHB modification reaction with MA reaction at 110°C for 1 h with 5% v/v triethylamine.  相似文献   

11.
A novel series of liquid crystalline copolyesters with T-shaped two-dimensional mesogenic unit and crown ether cycle of cis-4,4′-bis(4-hydroxyphenylazo)dibenzo-18-crown-6 was prepared via solution condensation polymerization from 4,4′-(α,ω-hexanedioyloxy)dibenzoyl dichloride(M_1),2-(4′-ethoxyphenyl)hydroquinone(M_2)and cis-4,4′-bis(4- hydroxyphenylazo)dibenzo-18-crown-6(M_3).The molecular weights of copolyesters are not high,and the intrinsic viscosity [η]of copolyesters ranges from 0.29-0.43.The monomer...  相似文献   

12.
The effect of fibre treatments on thermal stability of flax fibre and crystallization of flax fibre/polypropylene composites was investigated. For thermal stability study, flax fibres have been treated using maleic anhydride, maleic anhydride polypropylene copolymer, vinyltrimethoxy silane and alkalization. In order to compare thermal stability of flax fibres thermogravimetry (TG) analysis has been used. Kinetic parameters have been determined by Kissinger method. Results showed that all treatments improved thermal stability of flax fibres. For crystallinity analysis, three different techniques have been used, differential scanning calorimetry analysis (DSC), pressure–volume–temperature (PVT) measurements for analysis of volume shrinkage and polarized optical microscopy (POM). All techniques results showed that addition of flax fibre increased crystallization rate. Besides, depending on fibre surface treatment and crystallization temperature, flax fibre/PP composites can show transcrystallinity.  相似文献   

13.
The thermal properties and morphological development of isothermally crystallized isotactic polypropylene (iPP) blended with nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules at very small loading of POSS were studied with differential scanning calorimeter (DSC), thermal gravimetric analysis, dynamic mechanical analysis, polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). The result of DSC indicated that the crystallization rate of iPP increases with the increase in POSS contents during crystallization; moreover, the melting temperature of iPP/POSS nanocomposites slightly decreases, while the heat of fusion increases with the addition of POSS molecules at melting and remelting traces. The storage modulus and thermal stability, respectively, remarkably decrease, while the glass transition temperature of isothermally crystallized iPP/POSS nanocomposites increases slightly with the increase in POSS contents. The morphologies results of WAXD and POM show that the POSS molecules form about 35 nm sized nanocrystals and aggregate to form thread‐like and network structure morphologies, respectively, in the molten state even when the POSS content is very small. These results, therefore, suggest that the interaction force between the POSS molecules should be larger than the force between POSS molecules and iPP matrix; however, those interactions depend on the chain length of functionalized substituents on the POSS cage. Therefore, the POSS molecules aggregate forming nanocrystals and act as an effective nucleating agent for iPP and influence the thermal properties of iPP/POSS nanocomposites due to the shorter chain length of functionalized substituents, methyl, on the POSS cage. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2122–2134, 2006  相似文献   

14.
Thermal stability, crystallization, morphological development, subsequently melting, and crystallinity control of a syndiotactic 1,2‐polybutadiene sample were carefully carried out by thermogravimetry (TGA), polarized optical microscopy (POM), differential scanning calorimetry (DSC), temperature‐modulated differential scanning calorimetry (TMDSC), and wide‐angle X‐ray diffraction (WAXD), respectively. The experiments indicate that thermal cross‐linking reaction rates under nitrogen protection and in air are different for this polymer at temperature above 155 °C. Under nitrogen protection, the thermal cross‐linking reaction rate is delayed and the mechanism of melt crystallization obtained from the DSC results is in good accordance with that from POM observation. TMDSC results indicate that melting–recrystallization–melting model is more proper to explain the double melting events of this sample. At the same time, the evolution of the degree of crystallinity as the function of the time was investigated by WAXD profiles for the samples firstly crystallized at 145 °C for 1 h and then kept at 163 °C mediated between the temperatures of the double peaks. It shows that as prolonging the annealing time at 163 °C thermal cross‐linking reactions possibly occur, leading to gradual reduction of the apparent crystallite sizes, evaluated by Scherrer equation and the degree of crystallinity. The changing sequence of the relative intensity of the stronger four diffraction peaks with time due to thermal cross‐linking reactions is (111)/(201) > (210) > (010) > (200)/(110). © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2885–2897, 2005  相似文献   

15.
An analysis of the crystallization behaviour of a new poly(aryl-ether-ether-ketone-ketone), PK99, by differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) is presented. Isothermal crystallization TG were obtained in the whole range between the glass transition temperature (T g) and the melting temperature (T m) as a consequence of the slow crystallization kinetics stemming from the closeness of these transitions. The calorimetric results, compared with WAXD data, were applied to determine the theoretical melting temperature and crystallization enthalpy. The DSC and WAXD data were combined in order to calculate the total amount of the crystallizable fraction of the polymer, and a model was proposed to explain the difference between the fractions of crystallinity observed with these techniques. The thermal and X-ray data were also correlated with different lamellar morphologies arising from the crystallization conditions. Finally, DSC experiments on the crystallized sample were used to detect the presence of a rigid amorphous phase which does not relax at T g. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The influence of fermentation residues and quaternary ammonium salts on the thermal and thermo-mechanical degradation of a biodegradable bacterial poly(3-hydroxybutyrate), PHB, was studied. The results obtained from DSC, SEC and TG analyses performed on blends reveal that ammonium cations greatly enhance the degradation leading to a dramatic decrease in PHB molecular weight. These results are confirmed by the thermo-mechanical study. Besides, we show that the presence of fermentation residues does not affect significantly the PHB thermal stability in comparison to the ammonium cations. A kinetic analysis based on the Coats and Redfern model was applied to the non-isothermal TGA data. This method completed by NMR characterizations led us to determine the most probable mechanism for PHB degradation in the presence of the ammonium salts. The results demonstrate that ammonium surfactants commonly found in commercial nanoclays (for nanocomposites' production) effectively have a catalytic effect on the PHB degradation.  相似文献   

17.
为了解决废弃塑料引起的“白色污染”问题,世界各国竞相研制开发可生物降解高分子材料,其中,有关聚β羟基丁酸酯[poly(βhydroxybutyrate)(PHB)]的研究尤其活跃.然而,由于商品价格较高,材料本身抗冲击性能较差、加工窗口较窄等限制...  相似文献   

18.
为了解决废弃塑料引起的“白色污染”问题,世界各国竞相研制开发可生物降解高分子材料,其中,有关聚β 羟基丁酸酯[poly(β hydroxybutyrate)(PHB)]的研究尤其活跃.然而,由于商品价格较高,材料本身抗冲击性能较差、加工窗口较窄等限制...  相似文献   

19.
Biopolymer composites were prepared from poly(3-hydroxybutyrate) (PHB)/microcrystalline cellulose fiber (MCCF)/plastiziers/poly(vinyl acetate) by melt extrusion. The morphology, crystal structure, and non-isothermal crystallization of these composites were investigated by polarized optical microscopy (POM), differential scanning calorimetry, Fourier transform infrared spectrometer, and wide-angle X-ray diffraction. The results of DSC indicate that the addition of small amount of MCCF improved the crystallization rate. Non-isothermal crystallization shows that the composites 1 and 2 have lower crystallization half time (t 0 .5) than that of pure PHB. Higher MCCF contents in PHB (composite 4) lead to a decrease in the crystallization rate. POM micrographs show that the MCCF were well dispersed in the PHB matrix and served as a nucleating agent with a strong change in PHB morphology. Increasing the isothermal crystallization temperature above 120 °C, leads to the formation of banded spherulites with large regular band spacing. Decreasing the isothermal crystallization temperature below 100 °C produces more and small spherulites.  相似文献   

20.
Intermolecular hydrogen bonds, miscibility, crystallization and thermal stability of the blends of biodegradable poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-3HHx)] with 4,4-dihydroxydiphenylpropane (DOH2) were investigated by FTIR, 13C solid state NMR, DSC, WAXD and TGA. Intermolecular hydrogen bonds were found in both blend systems, which resulted from the carbonyl groups in the amorphous phase of both polyesters and the hydroxyl groups of DOH2. The intermolecular interaction between P(3HB-3HHx) and DOH2 is weaker than that between PHB and DOH2 owing to the steric hindrance of longer 3HHx side chains. Because of the effect of the hydrogen bonds, the chain mobility of both PHB and P(3HB-3HHx) components was limited after blending with DOH2 molecules. Single glass transition temperature depending on the composition was observed in all blends, indicating that those blends were miscible in the melt. The addition of DOH2 suppressed the crystallization of PHB and P(3HB-3HHx) components. Moreover, the crystallinity of PHB and P(3HB-3HHx) components also decreased with increasing DOH2 content in the blends. However, the crystal structures of the crystallizable components were not affected. The existence of DOH2 favors to thermal decomposition of PHB and P(3HB-3HHx) components, resulting in the decrease in thermal decomposition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号