首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of water, methyl and i-propyl alcohol vapours has been studied on the surface of titanosilicas produced by various methods, as well as on the surface of pure silicon and titanium oxides. Based on findings of the studies, it was concluded that the presence on the surface of pyrogenic titanosilicas (TAS) of hydrolytically unstable Si-O-Ti bonds is responsible for their increased adsorption activity towards water molecules. A dissociative adsorption of H2O on titanosiloxane bridges is accompanied by an appearance of additional groups ≡SiOH and ≡TiOH, which, in turn, become sites of adsorption of subsequent water molecules. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Mesoporous titanium-containing silicas with TiO2 contents from 1 up to 70 mol% were prepared. The obtained samples have been characterized by the powder X-ray diffraction data, the diffuse reflectance infrared Fourier transform method, and nitrogen adsorption at 77 K. Specific surface area, total pore volume, distribution pore volume on pore sizes were determined from nitrogen adsorption isotherm for synthesized titanosilicas. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
We have been developing the selective deposition method onto TiO2 nanoparticles, named as the liquid-phase selective-deposition method, where TiO2 plays a role of formation center of Ni nanoparticles as well as protection from the aggregative growth of the particles. The concept of this method is to well disperse and stabilize Ni nanoparticles on TiO2 surface by specific adsorption of Ni precursory complexes and then heterogeneous nucleation on the adsorption sites. The particle size was decreased with increasing the amount of Zn added, thus the catalytically active Ni surface area was increased. The selective deposition onto TiO2 surface and addition of Zn to the nanoparticle promoted the catalytic activity of Ni–Zn nanoparticle, e.g. the catalytic activity of Ni–Zn/TiO2 was ca. 10 times higher than that of the unsupported Ni nanoparticles. Ni in the nanocomposite was assigned as metallic, although their surface was oxidized under the atmospheric condition, but Zn and B were deposited as their oxide.  相似文献   

4.
Bromine (Br) and nitrogen (N) co-doped TiO2 ((Br–N–TiO2) photocatalysts were prepared by a sol–gel method. The catalysts were characterized by X-ray Diffraction (XRD), N2 adsorption and desorption isotherms, X-ray Photoelectron Spectra (XPS), UV-Vis Diffraction Spectra and Electron Spin Response (ESR) Spectra. Experiments on photodegradation of Methylene Blue (MB) and Sulfosalicylic Acid (SSA) under visible light were carried out to evaluate the photocatalytic activities of the catalysts. Chemical Oxygen Demand (COD) analysis was also conducted to evaluate the mineralization degrees of the catalysts in MB photodegradation. Enhanced photocatalytic activities were observed for the Br–N–TiO2 catalysts in the experiments of MB and SSA photodegradation. A possible mechanism was proposed to explain the improved photocatalytic activities of the Br–N–TiO2 catalysts.  相似文献   

5.
Silica and core–shell structured titania/silica (TiO2/SiO2) nanoparticles with particles size ranging from tens to hundreds of nanometers were prepared and deposited onto cotton fabric substrates by sol–gel process. The morphologies of the nanoparticles were characterized by field-emission scanning electron microscope (FE-SEM). The photocatalytic decomposition properties as well as UV-blocking properties of the fabrics treated with SiO2 and TiO2/SiO2 nanoparticles were investigated.  相似文献   

6.
Results of Carr and Galwey [1] concerning copper malonate (CM) decomposition in vacuo at 510 K prompted present studies on the utility of CM as a low-temperature precursor of oxide-supported copper catalysts. CM deposited upon metal oxides has been converted to copper particles by vacuum thermal decomposition or reduction with aqueous hydrazine. Using the dehydrogenation of isopropanol to acetone as a catalytic probe reaction, comparisons are made between levels of catalytic activity and selectivity induced in TiO2, MgO and Ca(OH)2 supports by copper deposited thereon. Effects of particle size, prereduction temperature, and support reducibility are described and evidence is given for a strong metal support interaction (SMSI)-like inhibition of activity of Cu/TiO2 by prior high temperature reduction.  相似文献   

7.
The effect of nanosized porous films (average density 10 g/m2) of TiO2. TiO2/SiO2, and SiO2 on the photostability of adsorbed methylene blue (MB) dye during UV irradiation in air was investigated by optical spectroscopy and laser-induced mass spectrometry. The effectiveness of the photodecomposition of MB decreases in the order TiO2 > TiO2/SiO2 > SiO2 with rate constants 1E-2, 0.6E-2, and 0.3E-2 min−1 respectively. A mechanism including the participation of both excited states of the dye molecules and photoexcited titanium dioxide is proposed for the photodecolorization of MB adsorbed on the surface of the investigated films. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 4, pp. 220–225, July–August, 2007.  相似文献   

8.
Methylene blue (MB)/TiO2 hybrid thin films were prepared on glassy carbon (GC) electrode surface by the liquid phase deposition (LPD) process. The electrochemical measurements indicated that MB retained its electrochemical activity in the hybrid films. The linear dependence of the reduction peak current for MB upon the scan rate and linear relationship between the middle point potential of MB and pH revealed the surface-confined two-proton two-electron electrochemical characteristics of MB entrapped in hybrid LPD films. Although the electron transfer of K3[Fe(CN)6] on GC surface was inhibited by TiO2 film, the catalytic reduction of K3[Fe(CN)6] by MB was observed on the MB/TiO2 hybrid films. The electrocatalytic activity of hybrid films was also demonstrated as an “artificial peroxidase” for the catalytic reduction of H2O2.  相似文献   

9.
The catalytic activity of dioxo-molybdenum(VI)-dichloro[4,4′-dicarboxylato-2,2′-bipyridine] covalently anchored through the carboxylate function to the surface of TiO2 has been tested for the oxidative degradation of 1-chloro-4-ethylbenzene in MeCN solution under argon and UV irradiation (λ = 254 nm). After 4–5 h of photochemical reaction, the Mo complex was reoxidized in the presence of O2 in the dark, and then the reaction was continued under argon. The reaction proceeds by the intermediate formation of 4′-chloroacetophenone that undergoes further decomposition to chlorobenzene, plus small amounts of oxygen-containing organochlorine compounds, CO2 and H2O. Similar results were obtained for the decomposition of 4′-chloroacetophenone under the same conditions, which also gave chlorobenzene as one of the main products. The ratio of [final product]/[Mo complex] increases during the decomposition of 1-chloro-4-ethylbenzene (up to 350–400% for 30–35 h of reaction), which provides evidence of a catalytic process. The probable photochemical reactions are discussed.  相似文献   

10.
Mesoporous TiO2/γ-Al2O3 composite granules were prepared by combining sol–gel/oil-drop method, using various titania solution. The product granules can be used as a photocatalyst or adsorbent in moving, fluidized bed reactors. The phase composition and pore structure of the granules can be controlled by calcination temperature and using different titania solution. In the photocatalysis of NH3 decomposition, TiO2/γ-Al2O3 granules using Degussa P25 powder treated thermally at 450 °C showed the highest catalytic ability. However, TiO2/γ-Al2O3 granules using titania made by hydrothermal method had comparable performance in NH3 decomposition.  相似文献   

11.
Mesoporous SiO2–TiO2 was synthesized by the sol–gel method using Si(OC2H5)4, Ti(OC2H5)4, and stearyltrimethylammonium chloride. By using acetylacetone as the capping agent of Ti(OC2H5)4, homogeneous SiO2–TiO2 composite was obtained. Spherical mesoporous SiO2–TiO2 was also synthesized by the sol–gel method using W/O emulsion under microwave irradiation. The specific surface area of these mesoporous SiO2–TiO2 materials decreased when the Ti/Si molar ratio was higher than 0.1, which indicated that Ti was homogeneously distributed in mesoporous SiO2 matrix at Ti/Si ≦ 0.1. The photocatalytic activity of mesoporous SiO2–TiO2 materials was investigated by the degradation of methylene-blue in water under UV light irradiation. Mesoporous SiO2–TiO2 was effective for the adsorption–decomposition of methylene-blue.  相似文献   

12.
The transparent TiO2 thin films coated on fused-SiO2 substrates were prepared by the sol–gel method and spin-coating technique. Effects of calcination temperature on crystal structure, grain size, surface texture, and light transmittance of the films were investigated. After calcining at 600–1,200 °C, the thicknesses of the TiO2 films were all around 80 nm and the molecular structures of the films were anatase, even at 1,200 °C. The calcined TiO2 films had the ultraviolet light (wavelength 200–400 nm) transmittances of ≤29% and the visible light (wavelength 400–800 nm) transmittance of ≥72%. By photocatalytically decomposing the methylene blue (MB) in water, the photocatalytic activities of the TiO2 thin films were measured and represented using the characteristic time constant (τ) for the MB degradation. While the films prepared at 1,000 and 1,200 °C photodecomposed about 54 mol% of the MB in water (the corresponding τ ≈ 14.8 h) after exposing to 365-nm UV light for 12 h, the films prepared at 600 and 800 °C had smaller τ (≈9.0 h) and photodecomposed about 74 mol% of the MB in water at the same testing conditions.  相似文献   

13.
Nitrogen-doped titania was coupled with the commercial titania nanoparticles by mechanical milling in liquid medium. The as-prepared nanocomposites (TiO2/TiO2−x N y ) were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) specific surface area, UV–Vis spectroscopy, chemiluminescence, and acetaldehyde decomposition activity techniques. When a small amount of nitrogen-doped titania was added into the commercial titania, higher intensity and longer lifetime of 1O2 was observed, and the photocatalytic activity was efficiently improved. The TiO2−x N y acts as the acceptor of photoinduced holes. The recombination of the electron-hole was effectively depressed by the heterogeneous electron transfer. This could be an effective way to obtain highly active photocatalysts.  相似文献   

14.
Au/TiO2/Ti electrode was prepared by a two-step process of anodic oxidation of titanium followed by cathodic electrodeposition of gold on resulted TiO2. The morphology and surface analysis of Au/TiO2/Ti electrodes was investigated using scanning electron microscopy and EDAX, respectively. The results indicated that gold particles were homogeneously deposited on the surface of TiO2 nanotubes. The nanotubular TiO2 layers consist of individual tubes of about 60–90 nm in diameter, and the electrode surface was covered by gold particles with a diameter of about 100–200 nm which are distributed evenly on the titanium dioxide nanotubes. This nanotubular TiO2 support provides a high surface area and therefore enhances the electrocatalytic activity of Au/TiO2/Ti electrode. The electrocatalytic behavior of Au/TiO2/Ti electrodes in the glucose electro-oxidation was studied by cyclic voltammetry. The results showed that Au/TiO2/Ti electrodes exhibit a considerably higher electrocatalytic activity toward the glucose oxidation than that of gold electrode.  相似文献   

15.
Titanate nanotubes (TNT) were proven to be efficient support for the immobilization of methylene blue (MB). UV–vis absorption and Fourier transform infrared spectra showed that the effect of MB absorbed on TNT was better than nanocrystalline anatase TiO2 (TNP). The quantity of MB absorbed onto TNT was found to be greater than that of TNP and the electrode modified with the MB–TNT film was more stable due to the strong interaction between TNT and MB as well. The absorption of MB on TNT was impacted by the pH value of the reaction solution for the change of surface charge. Electrochemical oxidation of dopamine (DA) at different electrodes was studied. The result showed that the MB–TNT composite film exhibited excellent catalytic activities to DA compared to those of pure TNT, which is a result of the great promotion of the electron-transfer rate between DA and the electrode surface by the MB–TNT film. Furthermore, the layer-by-layer self-assembly behavior of the electrochemically functional MB–TNT nanocomposite was also discussed after obtaining the stable colloid suspension of MB–TNT. The excellent electrochemical ability and the easy fabrication of layered nanocomposite make the MB–TNT nanocomposite very promising in electrochemistry study and new nanotube-based devices.  相似文献   

16.
Anatase TiO2 as a promising photocatalyst has been widely employed in the decontamination treatment of polluted water, air purification and water splitting. Coupling TiO2 with other semiconductor materials could further enhance the photocatalytic activity. Here, we successfully synthesized the SnOz/TiO2 catalyst by depositing SnO2 particles on the anatase TiO2 {105} facets through a gas phase oxidation process. The SnOz/TiO2 catalyst shows higher photocatalytic activity for decomposition of MB than that of the pure YiO2 catalyst. The enhanced photo- catalytic activity can be attributed to the efficient charge separation since TiO2 and SnO2 catalyst have staggered energy level.  相似文献   

17.
The support effects (SiO2, TiO2, Al2O3, MgO, CeO2 and ZrO2) as well as addition effect of group 6b and 7b elements were studied over various supported group 8–10 metal catalysts. Basic oxide support improved the selectivity to CO2 and acidic support suppressed the catalytic activity and selectivity. Among the investigated catalysts Pt–Mo/TiO2 was the most active catalysts, whereas Ir–Re/SiO2 was the most selective catalysts for H2 and CO2 formation. The mechanism of the liquid phase methanol reforming reaction over silica supported Pt–Ru catalyst was studied by kinetic investigations. The rate of H2 formation over Pt–Ru/SiO2 catalysts was more than 20 times faster than that over Pt/SiO2 catalysts with high selectivity for CO2 (72.3%), indicating a marked addition effect of Ru. In the case of HCHO–H2O reaction over Pt–Ru/SiO2, the H2 formation rate was five times larger than that in the CH3OH–H2O reaction but selectivity to CO2 was only 4%. On the contrary, in the HCOOCH3–H2O and HCOOH–H2O reactions, both high activity and selectivity were observed over Pt–Ru/SiO2. These results clearly indicate that the CO2 formation does not proceed via HCHO decomposition and following water gas shift reaction.  相似文献   

18.
Nanocrystalline Fe-doped TiO2 powders were prepared using TiOSO4, urea, and Fe(NO3)3 · 9H2O as precursors through a hydrothermal method. The as-synthesized yellowish-colored powders are composed of anatase TiO2, identified by X-ray diffraction (XRD). The grain size ranged from 9.7 to 12.1 nm, calculated by Scherrer’s method. The specific surface area ranged from 141 to 170 m2/g, obtained by the Brunauer–Emmett–Teller (BET) method. The transmission electron microscopy (TEM) micrograph of the sample shows that the diameter of the grains is uniformly distributed at about 10 nm, which is consistent with that calculated by Scherrer’s method. Fe3+ and Fe2+ have been detected on the surface of TiO2 powders by X-ray photoelectron spectroscopy (XPS). The UV–Vis diffuse reflection spectra indicate that the light absorption thresholds of the Fe-doped TiO2 powders have been red-shifted into the visible light region. The photocatalytic activity of the Fe-doped TiO2 was evaluated through the degradation of methylene blue (MB) under visible light irradiation. The Fe-doped TiO2 powders have shown good visible-light photocatalytic activities and the maximum degradation ratio is achieved within 4.5 h.  相似文献   

19.
LI  Cheng  MA  Zhenye  ZHANG  Lixiong  QIAN  Renyuan 《中国化学》2009,27(10):1863-1867
Metal/oxide nanoparticles are attractive because of their special structure and better properties. The Ni/TiO2 nanoparticles were prepared by a liquid phase chemical reduction method in this paper. The obtained‐products were characterized by inductively coupled plasma (ICP), X‐ray diffraction (XRD), high‐resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). The results show that Ni particles in Ni/TiO2 nanoparticles exhibit better dispersion and the size of most Ni particles is 10 nm or so. The catalytic activity of Ni/TiO2 nanoparticles on the thermal decomposition of ammonium perchlorate (AP) was investigated by simultaneous thermogravimetry and differential thermal analysis (TG‐DTA). Results show that composite process of Ni and TiO2 can improve the catalytic activity of Ni nanoparticles on the thermal decomposition of AP, which is mainly attributed to the improvement of Ni dispersion in Ni/TiO2 nanoparticles. The catalytic activity of Ni/TiO2 nanoparticles increases with increasing the weight ratio of Ni to AP.  相似文献   

20.
Among the great number of sol–gel prepared nanomaterials, TiO2 has attracted significant interest due to its high photocatalytic activity, excellent functionality, thermal stability and non-toxicity. The photocatalytic degradation of pollutants using un-doped and doped TiO2 nanopowders or thin films is very attractive for applications in environmental protection, as a possible solution for water purification. The present work describes a comparative structural and chemical study of un-doped TiO2 and the corresponding S- and Ag-doped materials. The photocatalytic activity was established by testing the degradation of organic chloride compounds from aqueous solutions. Sol–gel Ag-doped TiO2 coatings, prepared by co-gelation and sol–gel Ag-doped TiO2 coatings obtained from nanopowders were also compared. Their structural evolution and crystallization behaviour (lattice parameters, crystallite sizes, internal strains) with thermal treatment were followed by thermal analysis, X-ray diffraction, transmission electron microscopy, atomic force microscopy and specific surface areas measurements. X-ray photoelectron spectroscopy analyses were performed to characterize the surface composition and S or Ag speciation, which was used to interpret the catalytic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号