首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of ButCCH with trans-[Mo(N2)2(dppe)2] (dppe = Ph2PCH2CH2PPh2) gives [MoH3(CCBut)(dppe)2], whose X-ray structure is reported.  相似文献   

2.
trans‐[MoCl2(dppe)2] [dppe is 1,2‐ethane­diyl­bis­(di­phenyl­phos­phine), C26H24P2] was obtained as a side product from the reaction of trans‐[Mo(dppe)2(N2)2] with Cp*GeCl to give the germyl­yne complex trans‐[Cl(dppe)2Mo[triple‐bond]Ge(η1‐Cp*)]. The crystal structures of the hemi­pentane (0.5C5H12) and di­tetra­hydro­furan (2C4H8O) solvates of trans‐[MoCl2(dppe)2], (IIIa) and (IIIb), respectively, have been determined.  相似文献   

3.
Reaction of RCCH (R  Ph, CO2Meor CO2Et) with trans-[M(N2)2(dppe)2] (M  Mo or W; dppe  Ph2PCH2CH2PPh2) or [Mo(dppm)3] (dppm  Ph2PCH2PPh2) gives the alkyne complexes [M(RCCH)2(diphos)2] (diphos  dppe, M  Mo, R = Ph; dihpos  dppm, M  Mo, R  Ph or CO2Me) and the alkynyl complexes trans-[M(cCR)2(dppe)2], [MH2(CCR)2 (dppe)2] (M  Mo or W. R  Ph, CO2Me or CO2Et) and cis-[WH(CCCO2Me)(dppe)2]: the X-ray structure of trans-[Mo(CCPh)2(dppe)2] is reported.  相似文献   

4.
Reaction of cyanamide (NCNH2) with trans-[M(N2)2(dppe)2] (M = Mo or W, dppe = PH2PCH2CH2PPh2) leads to the formation of the bis(cyanoimido) complexes trans-[M(NCN)2(dppe)2]. The crystal structure of trans-[Mo(NCN)2(dppe)2] has been determined by an X-ray diffraction study.  相似文献   

5.
Microcalorimetric measurements at elevated temperatures of the heats of thermal decomposition and of iodination of a number of [M(CO)nL6-n] complexes (M = Cr, Mo, W; n = 3, 4; L = py, MeCN) have led to values for the standard enthalpies of formation of the following crystalline compounds (values given in kJ mol?) at 25°C: fac-[Mo(CO)3py3](275 ± 12), fac-[Mo(CO)3(NCCH3)3]  (410 ± 12), fac-[W(CO)3py3](250 ± 12), fac-[W(CO)3(NCCH3)3](405 ± 12) and cis-[Cr(CO)4py2](505 ± 20). From these and other data, including estimated heats of sublimation, the bond enthalpy contributions of the various metalligand bonds in the gaseous metal complexes were evaluated as follows (values in kJ mol?): D(Crpy) 102, D(Mopy) 146, DWPy) 173, D(Mo7z.sbnd;NCMe) 135 and D(WNCMe) 169. For a given metal the bond enthalpy contribution decreased in the order D(MCO) > D(Mpy) > D(Mz.sbnd;NCMe). This order is related to the σ- and π-bonding character of the ligand.  相似文献   

6.
The reactions of [Mo(N22(dppe)2], (dppe  Ph2PCH2CH2PPh2) with RC6H4NCO (R  H, p-CH3, p-Cl) in benzene under irradiation produces [Mo(RC6H4NCO)2(dppe)2] in good yields. Comparison of the infrared data for these complexes, with those previously reported for metal complexes of CO2-like molecules suggest a η2-C,O coordination to the metal.  相似文献   

7.
Diffusion-kinetic calculations [1-3] have been analysed to determine the isotopic effect in the radiolysis of water with ionising radiation of linear energy transfer characteristics (LET) from 0.2 to 60 eV/nm and at temperatures up to 300°C. This analysis shows that, for low LET radiation, the spur decay of e- aq is slower in D2O and results in a higher yield of e- aq, g(e- aq), at 10-7 -10-6s after the ionisation event. In low LET radiolysis, g(OD) ≈ g(OH) over the whole range of temperature but in high LET radiolysis g(OD) is clearly lower than g(OH). The isotopic effect on the yields of the radical products is enhanced by increasing LET but diminished by increasing temperature. The yields of the molecular products show the opposite isotopic effect to their radical precursors, namely g(D2) is 10-20% lower than g(H2) and g(D2O2) > g(H2O2). A particularly significant difference between g(D2O2) and g(H2O2) has been found at LET = 20 eV/nm. The isotopic dependence of the g-values estimated for fast neutron radiolysis is also presented.  相似文献   

8.
The structure of the new compound [Mo(η5-C5H5)2(2-NHNC5H4)][PF6] (1) has been determined. The crystals are orthorhombic, space group Pca21 with a 20.807(1), b 8.0030(8), c 10.056(3) Å, V 1674.5 Å3, Z = 4. The structure of [Mo(η5-C5H5)2(2-ONC5H4)][PF6] (2) has also been determined. The crystals are orthorhombic, space group Pnma with a 12.727(3), b 10.174(2), c 12.918(1) Å, V 1672.8 Å3, Z = 4. The structures were solved by Patterson and difference electron density syntheses and refined by least-squares to R of 0.028 for 1287 reflections for 1 and 0.059 for 1178 reflections for 2.Although not isostructural the two cationic complexes have equivalent geometries with the normal bent bismetallocene structure. For 1 the MoN bond lengths are 2.160(8) and 2.142(9) Å, with a NMoN bond angle of 59.8(3)°, whereas for 2 MoO is 2.142(10), MoN is 2.138(11) Å, the NMoO angle is 61.2(4)°. These parameters are discussed and compared with the corresponding data for similar biscyclopentadienyl complexes of molybdenum(IV). Extended Hückel molecular orbital calculations have been carried out to throw light on the nature of the bonding between the metal and the bidentate ligand.  相似文献   

9.
Pulse radiolysis of deuterated aqueous LiCl glasses at temperatures in the range 6 K to 70 K show that the yield G(e?IR) of infrared absorbing electrons (e?IR) increases sharply as the temperature is lowered when [LiCl] ? 10 M. Under these conditions the yield of visible absorbing electrons (e?vis) decreases, but to a lesser extent. When [LiCl] ? 8 M, G(e?IR) and G(e?vis) are both much less dependent on temperature. These data suggest that at very low temperatures e?IR are not trapped exclusively in a purely aqueous environment.  相似文献   

10.
The 95Mo NMR spectra of a series of seven-coordinate molybdenum(II) isocyanide complexes of the types [Mo(CNR)7-nLn](PF6)2 (R = CH3, CHMe2, CMe3, C6H11, CH2Ph; L = py, bpy, Me2bpy, phen, dppe, P-n-Bu3; n = 0,1,2) [Mo(CNC-Me3)6X]PF6 (X = Cl, Br, I) and [{Mo(CNCMe3)4(NN)}2(μ-CN)](PF6)3 (NN = bpy, Me2bpy, phen) have been studied. The 95Mo chemical shift range for this group of complexes is about 1100 ppm. An increase in the size of the R group attached to the isocyanide ligand generally tends to shield the 95Mo nucleus. Replacement of the isocyanide ligand with a phosphorus ligand also increases the shielding, whereas the replacement of isocyanide with a heterocyclic nitrogen donor leads to deshielding by 800–900 ppm. This group of complexes shows a normal halogen dependence, i.e. replacement of Cl? by Br? and I? increases the shielding of the 95Mo nucleus. The cyano-bridged cations [{Mo(CNCMe3)4(NN)}2(μ-CN)]3+ (NN = bpy, Me2bpy, or phen) show two 95Mo NMR signals, one for the molybdenum coordinated to the carbon of the bridging CN and one for the N-coordinated molybdenum. Comparison of the chemical shifts and linewidths of the cyano-bridged species with those of the corresponding mononuclear molybdenum(II) complexes [Mo(CNCMe3)5(NN)](PF6)2 leads to the assignment of the more deshielded signal to the N-coordinated molybdenum. The 14N and 31P NMR spectra for these complexes have also been measured, as have the 13C NMR spectra of the pairs of complexes [Mo(CNCMe3)5(NN)](PF6)2 and [{Mo(CNCMe3)4(NN)}2(μ-CN)](PF6)3 (NN = bpy or phen). The 183W NMR spectra for [W(CNR)5(bpy)](PF6)2 (R = CMe3 and CH2Ph), show that the δ(183W)/δ(95Mo) chemical shift ratios for isocyanide complexes are different from the ratio found for M0 and MVI.  相似文献   

11.
Sodium amalgam reduction of the complexes [MCl3(PMe3)3] (M = Mo, W) in tetrahydrofuran, under dinitrogen, yields dark red-brown suspensions from which red-orange crystals of composition trans-[MCl(N2)· (PMe3)4] can be collected. Spectroscopic and chemical evidence indicate the compounds are best formulated as mixtures of trans-[M(N2)2(PMe3)4] and trans-[MCl2(PMe3)4] species, but attempts to isolate the pure bis(dinitro derivatives have proved unsuccessful. Single crystals of analytical composition [MCl(N2)(PMe3)4] have been studied by X-ray crystallography, and the structure of trans-[MoCl2(PMe3)4] has been determined for comparison. trans-[MCl(N2)(PMe3)4] (M = Mo, W) and trans-[MoCl2(PMe3)4] are all isostructural, crystallizing in the tetragonal space group I42 trans-[MoCl(N2)(PMe3)4] has a = 9.597(5), b = 12.294(6) Å, Dc = 1.36g cm?3 Z = 2 and was refined to a final R value of 0.021 based on 319 independent observed reflections. The tungsten analogue has a = 9.573(4), b = 12.278(5) Å, Dc = 1.63g cm?3 for Z = 2 and was refined to R = 0.19 with 322 independent observed reflections. trans-[MoCl2(PMe3)4] has cell parameters a = 9.675(5), b = 12.311(6) Å Dc = 1.36 g cm?3 for Z = 2 and was refined to R = 0.043 with 316 independent observed reflections. In each case the metal atom resides on a crystallographic 42m position. For trans-[MoCl(N2)(PMe3)4] (M = Mo, W) the chlorine and dinitrogen ligands are disordered. M-N distances of 2.08(1) ? (M = Mo) and 2.04(2) ? (M = W) and M-Cl bond lengths of 2.415(8) Å (M = Mo) and 2.46(1) Å (M = W) are observed. In trans-[MoCl2(PMe3)4], where there is no disorder, the Mo-Cl distance is 2.420(6) Å.  相似文献   

12.
Summary Treatment of complexestrans-[M(CNBu-t)2(dppe)2][(1) M = Mo or W, dppe = Ph2PCH2CH2PPh2] with protic acid gives a mixture of the aminocarbyne complexestrans- pluscis-[M(CNHBu-t)(CNBu-t)(dppe)2]+ (2) and the hydridocompounds [MH(CNBu-t)2(dppe)2]+ (3), whereas reaction with an alkylating agent (R+) appears to give the dialkylaminocarbyne compounds [M(CNRBu-t)(CNBu-t)(dppe)2]+ (4) also as a mixture of thetrans andcis isomers.  相似文献   

13.
The syntheses of [Rh(diol)(formamidine)]2 complexes (diol  cycloocta-1,5-diene (1); diol  norbornadiene (2); formamidine  N,N′-di-p-tolylformamidine) are reported. These complexes are dimeric and contain the bridging formamidino ligand. They react with CO, dppe and PPh3 with displacement of the diene ligand to yield the known [Rh(CO)2(formamidine)]2, [Rh(dppe)2]+ and [Rh(PPh3)2(formamidine)], respectively; the last complex, in which the formamidine acts as a chelating ligand, was isolated only as the O2 adduct. With HCl or HBF4 aqueous 1 and 2 do not form hydrides but instead the formamidino cation [p-tolyl-NHCHNHtolyl-p]+ and the complexes [Rh(diol)X]2 (X  Cl, F); a possible scheme for the reaction with HCl is proposed. The [Rh(C8H12)(formamidine)]2 complex reacts with heterocumulenes as CS2, SO2, PhNCS and PhNCO with diene displacement; the only product isolated was [Rh(CS2)2(formamidine], to which a polymeric structure is assigned.  相似文献   

14.
Treatment of a THF solution of trans-[ReCl(N2)(dppe)2] (dppe = Ph2PCH2CH2PPh2) with NO, in the presence of Tl[BF4], forms trans-[Re(NO)2(dppe)2][BF4], a rare formal 20-electron d8-rhenium nitrosyl complex which, by reaction with HX (X = BF4, Cl or HSO4), gives trans-[ReF(NO)(dppe)2][BF4] (2) (the X-ray structure of which is reported) or trans-[ReX(NO)(dppe)2]X (3, X = Cl or HSO4), respectively, as well as nitrous oxide.  相似文献   

15.
Crystals of [Mo(η5-C5H5)2(NH3)(SC6H5)][PF6] · (CH3)2CO solvate are monoclinic, space group P21/n, a 9.777(1), b 11.6343(2), c 19.656(4) Å, β 93.60(1)°, V 2231-46 Å3, ZDc 1.617 g cm−3, μ(Mo-Kα) 7.21 cm−1. The structure was solved by Patterson and difference Fourier electron density synthesis and refined to R (F)  0.047 and Rw(F)  0.057 for 3293 observed reflections. The molybdenum atom has the usual distorted tetrahedral geometry comprising the two MoCp (Cp  η5-C5H5) ring normals (MoCp 1.988(13), 1.989(15) Å), one Mo-NH3 (MoN 2.226(12) Å), and one MoSc6H5 (MoS 2.465(5) Å). Extended HMO and steric energy calculations were made in order to account for the geometry adopted by the thiolato ligand in this complex.  相似文献   

16.
The trans-PH2PCH=CHPPh2 (t-dppe)-bridged bimetallic 10-membered ring complexes [M2(CO)8(μ-t0dppe)2] (M = Cr or MO) have been synthesized by treatment of the metal hexacarbonyl with one equivalent of t-dppe at elevated temperature. the fluxional process in the Mo(μ-t-dppe) Mo ring has been studied by variable temperature 13P-{1H} NMR spectroscopy and is characterised by a change from an A4 spin system at +20°C to an AA′BB′ system at −100°C. The bimetallic complex [Mo2(CO)6(μ-tdppe)3] has been prepared and 13P-{1H} NMR studies indicate that in solution all four phosphorus nuclei are equivalent, even at −115°C. Attempts to prepare related heterobimetallic complexes are also described. Crystals of [Mo2(CO)8(μ-trans-Ph2PCH=CHPPh2)2] are monoclinic, space group P21/a, with a 2020.2(5), b 1423.1(5), c 2145.1(5) pm, β 113.95(2)°, and Z = 4; final R factor 0.0465 for 5668 observed reflections. The structure shows two [Mo(CO)4] moieties linked by two trans-dppe bridges to give a 10-membered Mo2P4C4 ring.  相似文献   

17.
Interaction of the chiral organometallic Lewis bases Cp(CO)(Me3P)Fe—EMe2 (E = As, Sb, Bi) (1a–1c) with the norbornadiene metal complex (C7H8)Mo(CO)4 yields the first examples of trinuclear complexes [Cp(CO)(Me3P)Fe—EMe2]2Mo(CO)4 (2a–2c), bearing two chiral metal atoms separated by a E—Mo—E-linkage. 2a–2c are generated as a mixture of two diastereomers (RS/SR, RR/SS), which gives rise to a resonance doubling in their 1H and 31P NMR spectra. This phenomenon is not observed for the achiral, in part sterically more crowded derivatives [Cp(CO)2Fe—SbMe2]2Mo(CO)4 (4) and [Cp(CO)2(Me3P)Mo—EMe2]2Mo(CO)4 (E = As, Sb (6a, 6b)), which excludes the existence of conformers resulting from restricted rotation about the FeE or MoE bond in the case of 2a–2c.  相似文献   

18.
The reduction of [WCl4(PMe3)3] with dispersed sodium, under dinitrogen, gives cis-[W(N2)2(PMe3)4], while under ethylene trans-[W(C2H4)2(PMe3)4] is obtained. The ethylene complex can also be prepared by displacement of the dinitrogen molecules in cis-[W(N2)2(PMe3)4] by ethylene at room temperature and pressure. Interaction of cis-[M(N2)2(PMe3)4] complexes (M = Mo, W), with PMe3, under helium or argon, yields [M(N2)(PMe3)5]. The molybdenum complex crystallizes in the orthorhombic space group Pnma, with a 22.063(6), b 12.106(4), c 9.745(4) Å. The Mo—P distance trans to the dinitrogen ligand (2.483(7) Å) is slightly longer than the average of the other four Mo—P bonds (2.460(5) Å).  相似文献   

19.
Summary The interconversion of carbyne, carbyne and hydride complexes derived from protonations oftrans-[M(CNMe)2(dppe)2](M = Mo or W) has been studied. The initial site of protonation is shown to be the isonitrile nitrogen and all protonations proceed through the common carbyne intermediatetrans-[M(CNHMe)(CNMe)(dppe)2]+. The CNHMe group in traps-[M(CNHMe)2(dppe)2]2+ is shown to be susceptible to electrophilic attack at N and nucleophilic attack at ligating C, the new complexestrans-[W(CNH2Me)(CNHMe)(dppe)2](BF4)3 andtrans-[Mo(CHNHMe)(CNHMe)(dppe)2]BF4 being formed, respectively.  相似文献   

20.
A useful criterion of linear or bent geometry at Nα of diazenido (-NαNβR) ligands is afforded by 15N NMR. A very large downfield shift (ca. 350 ppm) of the Nα resonance is reported for the “doubly-bent” diazenido ligands in [RhCl2(15NNC6H4R-4)(PPh3)2] (R = H or NO2) compared with the “singly-bent” diazenido ligands in trans-[MX(15N2R1)(dppe)2] (M = Mo or W, X = Cl or Br, R1 = Et or COMe), [ReCl2(15N2COC6H5)(C5H5N)(PPh3)2] and [RuCl3(15NNC6H5)(PPh3)2].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号