首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a robust control system combining backstepping and sliding mode control techniques is used to realize the synchronization of two gap junction coupled chaotic FitzHugh-Nagumo (FHN) neurons in the external electrical stimulation. A backstepping sliding mode approach is applied firstly to compensate the uncertainty which occur in the control system. However, the bound of uncertainty is necessary in the design of the backstepping sliding mode controller. To relax the requirement for the bound of uncertainty, an adaptive backstepping sliding mode controller with a simple adaptive law to adapt the uncertainty in real time is designed. The adaptive backstepping sliding mode control system is robust for time-varying external disturbances. The simulation results demonstrate the effectiveness of the control scheme.  相似文献   

2.
We discuss the cascaded-based controlled synchronization method for hyperchaotic systems. The control approach is based on analysis tools for cascaded time-varying systems. That is, the closed-loop system takes the form of two subsystems which are interconnected in a manner that the state of one system enters into another but without feedback loop. The advantage of such construction is that the controller is largely simplified relative to other design methods such as backstepping. We apply the method to Chen’s hyperchaotic system and show that global synchronization is achieved via linear control. Also, we assume that only three instead of four control inputs are available. The method is tested in numerical simulations.  相似文献   

3.
4.
In this article, based on the stability theory of fractional‐order systems, chaos synchronization is achieved in the fractional‐order modified Van der Pol–Duffing system via a new linear control approach. A fractional backstepping controller is also designed to achieve chaos synchronization in the proposed system. Takagi‐Sugeno fuzzy models‐based are also presented to achieve chaos synchronization in the fractional‐order modified Van der Pol–Duffing system via linear control technique. Numerical simulations are used to verify the effectiveness of the synchronization schemes. © 2015 Wiley Periodicals, Inc. Complexity 21: 116–124, 2016  相似文献   

5.
Synchronization of Genesio chaotic system via backstepping approach   总被引:9,自引:0,他引:9  
Backstepping design is proposed for synchronization of Genesio chaotic system. Firstly, the control problem for the chaos synchronization of nominal Genesio systems without unknown parameters is considered. Next, an adaptive backstepping control law is derived to make the error signals between drive Genesio system and response Genesio system with an uncertain parameter asymptotically synchronized. Finally, the approach is extended to the synchronization problem for the system with three unknown parameters. The stability analysis in this article is proved by using a well-known Lyapunov stability theorem. Note that the approach provided here needs only a single controller to realize the synchronization. Two numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

6.
In this paper, a robust adaptive control law for a class of uncertain nonlinear systems is proposed. The proposed controller guarantees asymptotic output tracking of systems in the strict-feedback form with unknown static parameters, and matched and unmatched dynamic uncertainties. This controller takes advantages of a robust stability property of the Lyapunov redesign method and a systematic design procedure of the backstepping technique. In fact, the backstepping technique is employed to enrich the Lyapunov redesign method to compensate for not only matched - but also unmatched-uncertainties. On the other hand, using the Lyapunov redesign method in each step of the conventional backstepping technique makes backstepping robust. The suggested controller is designed through repeatedly utilizing the Lyapunov redesign method in each step of the backstepping technique. Simulation results reveal the efficiency of the Lyapunov redesign-based backstepping controller.  相似文献   

7.
In this work we investigate the dynamical behaviors of Van der Pol-Duffing circuit (ADVP) with parallel resistor. The model is described by a continuous-time three dimensional autonomous system. The stability conditions of the equilibria are analyzed. The existence of periodic solutions and their stabilities about the node equilibrium point of the system are studied by using Hopf's theorem and Hsü and Kazarinoff theorem. Lyapunov spectrum is calculated for the proposed system. Adaptive synchronization using backstepping design is applied successfully to the system. Chaotic behaviors and the efficiency of the synchronization method are verified by numerical simulations.  相似文献   

8.
A new problem of adaptive type-2 fuzzy fractional control with pseudo-state observer for commensurate fractional order dynamic systems with dead-zone input nonlinearity is considered in presence of unmatched disturbances and model uncertainties; the control scheme is constructed by using the backstepping and adaptive technique. To avoid the complexity of backstepping design process, the dynamic surface control is used. Also, Interval type-2 Fuzzy logic systems (IT2FLS) are used to approximate the unknown nonlinear functions. By using the fractional adaptive backstepping, fractional control laws are constructed; this method is applied to a class of uncertain fractional-order nonlinear systems. In order to better control performance in reducing tracking error, the PSO algorithm is utilized for tuning the controller parameters. Stability of the system is proven by the Mittag–Leffler method. It is shown that the proposed controller guarantees the boundedness property for the system and also the tracking error can converge to a small neighborhood of the origin. The efficiency of the proposed method is illustrated with simulation examples.  相似文献   

9.
In the present article, the authors have proposed a modified projective adaptive synchronization technique for fractional‐order chaotic systems. The adaptive projective synchronization controller and identification parameters law are developed on the basis of Lyapunov direct stability theory. The proposed method is successfully applied for the projective synchronization between fractional‐order hyperchaotic Lü system as drive system and fractional‐order hyperchaotic Lorenz chaotic system as response system. A comparison between the effects on synchronization time due to the presence of fractional‐order time derivatives for modified projective synchronization method and proposed modified adaptive projective synchronization technique is the key feature of the present article. Numerical simulation results, which are carried out using Adams–Boshforth–Moulton method show that the proposed technique is effective, convenient and also faster for projective synchronization of fractional‐order nonlinear dynamical systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a four-dimensional (4D) continuous autonomous hyperchaotic system is introduced and analyzed. This hyperchaotic system is constructed by adding a linear controller to the 3D autonomous chaotic system with a reverse butterfly-shape attractor. Some of its basic dynamical properties, such as Lyapunov exponents, Poincare section, bifurcation diagram and the periodic orbits evolving into chaotic, hyperchaotic dynamical behavior by varying parameter d are studied. Furthermore, the full state hybrid projective synchronization (FSHPS) of new hyperchaotic system with unknown parameters including the unknown coefficients of nonlinear terms is studied by using adaptive control. Numerical simulations are presented to show the effective of the proposed chaos synchronization scheme.  相似文献   

11.
This paper presents a robust algorithm to control the chaotic atomic force microscope system (AFMs) by backstepping design procedure. The proposed feedback controller is composed by a sliding mode control (SMC) and a backstepping feedback, so its implementation is quite simple and can be made on the basis of the measured signal. The developed control scheme allows chaos suppression despite uncertainties in the model as well as system external disturbances. The concept of extended system is used such that a continuous sliding mode control effort is generated using backstepping scheme. It is guaranteed that under the proposed control law, uncertain AFMs can asymptotically track target orbits. The converging speed of error states can be arbitrary turned by assigning the corresponding dynamics of the sliding surfaces. Numerical simulations demonstrate its advantages by stabilizing the unstable periodic orbits of the AFMs and this method can also be easily extended to elimination chaotic motion in any types of chaotic AFMs.  相似文献   

12.
In this paper, the nonfragile control problem for synchronization of a class of chaotic dynamical systems with controller gain variations is studied. Using the Lyapunov method and LMI (linear matrix inequality) technique, a criterion for the existence of the nonfragile controller for synchronization is derived in terms of LMI. To show the effectiveness of the proposed method, the control problem is applied to Genesio chaotic system.  相似文献   

13.
In this paper, the issue of finite-time lag synchronization of coupled reaction–diffusion systems with time-varying delay (CRDSTD) is considered. A periodically intermittent controller is designed such that drive system and corresponding response system can achieve finite-time lag synchronization. By using graph theory and Lyapunov method, two sufficient criteria are presented to guarantee the finite-time lag synchronization of CRDSTD. Moreover, the time of achieving lag synchronization of CRDSTD is estimated. Finally, a numerical example is given to show the effectiveness of the proposed results.  相似文献   

14.
In this paper, we propose a new fuzzy delayed output feedback synchronization (FDOFS) method for time-delayed chaotic systems. Based on Lyapunov–Krasovskii theory, T–S fuzzy model, and delayed feedback control scheme, the FDOFS controller is designed and an analytic expression of the controller is shown. The proposed controller can guarantee asymptotical synchronization of both drive and response systems. The FDOFS controller can be obtained by solving the linear matrix inequality (LMI) problem. A numerical example for time-delayed Lorenz system is presented to demonstrate the validity of the proposed FDOFS method.  相似文献   

15.
Nonlinear control is an effective method for making two identical chaotic systems or two different chaotic systems be synchronized. However, this method assumes that the Lyapunov function of error dynamic (e) of synchronization is always formed as V (e) = 1/2eTe. In this paper, modification based on Lyapunov stability theory to design a controller is proposed in order to overcome this limitation. The method has been applied successfully to make two identical new systems and two different chaotic systems (new system and Lorenz system) globally asymptotically synchronized. Since the Lyapunov exponents are not required for the calculation, this method is effective and convenient to synchronize two identical systems and two different chaotic systems. Numerical simulations are also given to validate the proposed synchronization approach.  相似文献   

16.
In this paper, we consider the master–slave synchronization problem of chaotic Lur’e systems. It is assumed that only quantized sampled measurements are available for the controller. By modeling the synchronization error system as an input-delay system and constructing a new Lyapunov functional, a new sufficient condition and feedback controller design method for global exponential asymptotical synchronization of master and slave system are obtained. The proposed approach has taken the feature of sample-induced delay into consideration and simulation results show the less conservativeness.  相似文献   

17.
This paper presents a novel adaptive backstepping tracking control for nonlinear uncertain active suspension system, which can achieve the coordinated control over the sprung-mass acceleration and suspension dynamic displacement for nonlinear uncertain active suspension system based on a developing model-reference system. First, according to adaptive backstepping control principle, this model-reference system is designed with purpose of providing the ideal reference trajectories for the sprung-mass displacement and vertical velocity, respectively. Then, the design of a coordinated adaptive backstepping tracking controller is conducted to make the control plant accurately track the prescribed performances of the model-reference system by virtue of the backstepping technique and Lyapunov stability theory, in which a virtual controller with online parameter regulation rules is designed and implemented to guarantee the stability of vehicle body. Finally, a numerical example is provided to verify the effectiveness of our designed adaptive backstepping tracking controller under various operating scenarios.  相似文献   

18.
Contraction theory based stability analysis exploits the incremental behavior of trajectories of a system with respect to each other. Application of contraction theory provides an alternative way for stability analysis of nonlinear systems. This paper considers the design of a control law for synchronization of certain class of chaotic systems based on backstepping technique. The controller is selected so as to make the error dynamics between the two systems contracting. Synchronization problem with and without uncertainty in system parameters is discussed and necessary stability proofs are worked out using contraction theory. Suitable adaptation laws for unknown parameters are proposed based on the contraction principle. The numerical simulations verify the synchronization of the chaotic systems. Also parameter estimates converge to their true values with the proposed adaptation laws.  相似文献   

19.
In this paper, an adaptive fuzzy output feedback approach is proposed for a single-link robotic manipulator coupled to a brushed direct current (DC) motor with a nonrigid joint. The controller is designed to compensate for the nonlinear dynamics associated with the mechanical subsystem and the electrical subsystems while only requiring the measurements of link position. Using fuzzy logic systems to approximate the unknown nonlinearities, an adaptive fuzzy filter observer is designed to estimate the immeasurable states. By combining the adaptive backstepping and dynamic surface control (DSC) techniques, an adaptive fuzzy output feedback control approach is developed. Stability proof of the overall closed-loop system is given via the Lyapunov direct method. Three key advantages of our scheme are as follows: (i) the proposed adaptive fuzzy control approach does not require that all the states of the system be measured directly, (ii) the proposed control approach can solve the control problem of robotic manipulators with unknown nonlinear uncertainties, and (iii) the problem of “explosion of complexity” existing in the conventional backstepping control methods is avoided. The detailed simulation results are provided to demonstrate the effectiveness of the proposed controller.  相似文献   

20.
In this contribution a mathematical model of a variable displacement axial piston pump controlled by a solenoid valve is derived. For the purpose of a controller design the mathematical model is simplified using singular perturbation arguments. The goal of the controller design is to track prescribed trajectories in the load pressure for arbitrary unknown load conditions. The control concept being proposed comprises a feedforward controller and a nonlinear backstepping controller combined with a load estimator for the trajectory error system. The feasibility of this control concept is shown by means of measurements on a test-stand. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号