首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MALDI imaging mass spectrometry (MALDI-IMS) has become a powerful tool for the detection and localization of drugs, proteins, and lipids on-tissue. Nevertheless, this approach can only perform identification of low mass molecules as lipids, pharmaceuticals, and peptides. In this article, a combination of approaches for the detection and imaging of proteins and their identification directly on-tissue is described after tryptic digestion. Enzymatic digestion protocols for different kinds of tissues—formalin fixed paraffin embedded (FFPE) and frozen tissues—are combined with MALDI-ion mobility mass spectrometry (IM-MS). This combination enables localization and identification of proteins via their related digested peptides. In a number of cases, ion mobility separates isobaric ions that cannot be identified by conventional MALDI time-of-flight (TOF) mass spectrometry. The amount of detected peaks per measurement increases (versus conventional MALDI-TOF), which enables mass and time selected ion images and the identification of separated ions. These experiments demonstrate the feasibility of direct proteins identification by ion-mobility-TOF IMS from tissue. The tissue digestion combined with MALDI-IM-TOF-IMS approach allows a proteomics “bottom-up” strategy with different kinds of tissue samples, especially FFPE tissues conserved for a long time in hospital sample banks. The combination of IM with IMS marks the development of IMS approaches as real proteomic tools, which brings new perspectives to biological studies.  相似文献   

2.
Prefabricated surfaces containing α‐cyano‐4‐hydroxycinnamic acid and trypsin have been developed to facilitate enzymatic digestion of endogenous tissue proteins prior to matrix‐assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). Tissue sections are placed onto slides that were previously coated with α‐cyano‐4‐hydroxycinnamic acid and trypsin. After incubation to promote enzymatic digestion, the tissue is analyzed by MALDI IMS to determine the spatial distribution of the tryptic fragments. The peptides detected in the MALDI IMS dataset were identified by Liquid chromatography‐tandem mass spectrometry/mass spectrometry. Protein identification was further confirmed by correlating the localization of unique tryptic fragments originating from common parent proteins. Using this procedure, proteins with molecular weights as large as 300 kDa were identified and their distributions were imaged in sections of rat brain. In particular, large proteins such as myristoylated alanine‐rich C‐kinase substrate (29.8 kDa) and spectrin alpha chain, non‐erythrocytic 1 (284 kDa) were detected that are not observed without trypsin. The pre‐coated targets simplify workflow and increase sample throughput by decreasing the sample preparation time. Further, the approach allows imaging at higher spatial resolution compared with robotic spotters that apply one drop at a time. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The spatial distribution of proteins in tissue sections can be used to identify potential markers for pathological processes. Tissue sections are often subjected to enzymatic digestion before matrix‐assisted laser desorption/ionization (MALDI) imaging. This study is targeted at improving the on‐tissue identification of tryptic peptides by accurate mass measurements and complementary off‐line liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC/ESI‐MS/MS) analysis. Two adjacent mouse brain sections were analyzed in parallel. The first section was spotted with trypsin and analyzed by MALDI imaging. Direct on‐tissue MS/MS experiments of this section resulted in the identification of 14 peptides (originating from 4 proteins). The second tissue section was homogenized, fractionated by ultracentrifugation and digested with trypsin prior to LC/ESI‐MS/MS analysis. The number of identified peptides was increased to 153 (corresponding to 106 proteins) by matching imaged mass peaks to peptides which were identified in these LC/ESI‐MS/MS experiments. All results (including MALDI imaging data) were based on accurate mass measurements (RMS <2 ppm) and allow a confident identification of tryptic peptides. Measurements based on lower accuracy would have led to ambiguous or misleading results. MS images of identified peptides were generated with a bin width (mass range used for image generation) of Δm/z = 0.01. The application of accurate mass measurements and additional LC/MS measurements increased both the quality and the number of peptide identifications. The advantages of this approach for the analysis of biological tissue sections are demonstrated and discussed in detail. Results indicate that accurate mass measurements are needed for confident identification and specific image generation of tryptic peptides in tissue sections. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Matrix-Assisted Laser Desorption/Ionization (MALDI) Imaging Mass Spectrometry (IMS) is a molecular technology that allows simultaneous investigation of the content and spatial distribution of molecules within tissue. In this work, we examine different classes of detergents, the anionic sodium dodecyl sulfate (SDS), the nonionic detergents Triton X-100, Tween 20 and Tween 80, and the zwitterionic 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) for use in MALDI IMS of analytes above m/z 4000. These detergents were found to be compatible with MALDI MS and did not cause signal suppression relative to non-detergent applications and did not produce interfering background signals. In general, these detergents enhanced signal acquisition within the mass range m/z 4-40 000. Adding detergents into the matrix was comparable with the separate application of detergent and matrix. Evaluation of spectra collected from organ-specific regions of a whole mouse pup section showed that different detergents perform optimally with different organs, indicating that detergent selection should be optimized on the specific tissue for maximum gain. These data show the utility of detergents towards enhancement of protein signals for on-tissue MALDI IMS analysis.  相似文献   

5.
Matrix-assisted laser/desorption ionization (MALDI) mass-spectrometric imaging (MSI), also known as MALDI imaging, is a powerful technique for mapping biological molecules such as endogenous proteins and peptides in human skin tissue sections. A few groups have endeavored to apply MALDI-MSI to the field of skin research; however, a comprehensive article dealing with skin tissue sections and the application of various matrices and enzymes is not available. Our aim is to present a multiplex method, based on MALDI-MSI, to obtain the maximum information from skin tissue sections. Various matrices were applied to skin tissue sections: (1) 9-aminoacridine for imaging metabolites in negative ion mode; (2) sinapinic acid to obtain protein distributions; (3) α-cyano-4-hydroxycinnamic acid subsequent to on-tissue enzymatic digestion by trypsin, elastase, and pepsin, respectively, to localize the resulting peptides. Notably, substantial amounts of data were generated from the distributions retrieved for all matrices applied. Several primary metabolites, e.g. ATP, were localized and subsequently identified by on-tissue postsource decay measurements. Furthermore, maps of proteins and peptides derived from on-tissue digests were generated. Identification of peptides was achieved by elution with different solvents, mixing with α-cyano-4-hydroxycinnamic acid, and subsequent tandem mass spectrometry (MS/MS) measurements, thereby avoiding on-tissue MS/MS measurements. Highly abundant peptides were identified, allowing their use as internal calibrants in future MALDI-MSI analyses of human skin tissue sections. Elastin as an endogenous skin protein was identified only by use of elastase, showing the high potential of alternative enzymes. The results show the versatility of MALDI-MSI in the field of skin research. This article containing a methodological perspective depicts the basics for a comprehensive comparison of various skin states.
Figure
Matrix-assisted laser/desorption ionization (MALDI) mass-spectrometric imaging (MSI), also known as MALDI imaging, is a powerful technique for mapping biological molecules in human skin tissue sections. In this body of work, a multiplex method, based on MALDI-MSI, is presented to obtain maximum information from skin tissue sections. Therefore, various matrices were applied to skin tissue sections: (1) 9-aminoacridine (9-AA) for imaging small molecules in negative ion mode; (2) sinapinic acid (SA) to obtain protein distributions; (3) α-cyano-4-hydroxycinnamic acid (α-HCHA) subsequent to on-tissue enzymatic digestion by trypsin, elastase, and pepsin, respectively, to localize the resulting peptides. Of note, identification of metabolites was achieved by post-source decay (PSD) MALDI, and proteins were identified subsequent to enzymatic digestion via the resulting peptides which were eluted from the skin tissue section and afterwards analyzed with use of a tandem time-of-flight (ToF) mass spectrometer. The application of alternative enzymes, such as pepsin and elastase, is highlighted within this article  相似文献   

6.
Matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful molecular mapping technology that offers unbiased visualization of the spatial arrangement of biomolecules in tissue. Although there has been a significant increase in the number of applications employing this technology, the extracellular matrix (ECM) has received little attention, likely because ECM proteins are mostly large, insoluble and heavily cross‐linked. We have developed a new sample preparation approach to enable MALDI IMS analysis of ECM proteins in tissue. Prior to freezing and sectioning, intact tissues are decellularized by incubation in sodium dodecyl sulfate. Decellularization removes the highly abundant, soluble species that dominate a MALDI IMS spectrum while preserving the structural integrity of the ECM. In situ tryptic hydrolysis and imaging of tryptic peptides are then carried out to accommodate the large sizes of ECM proteins. This new approach allows the use of MALDI IMS for identification of spatially specific changes in ECM protein expression and modification in tissue. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Proteomics requires an optimized level of sample-processing, including a minimal sample-processing time and an optimal peptide recovery from protein digests, in order to maximize the percentage sequence coverage and to improve the accuracy of protein identification. The conventional methods of protein characterization from one-dimensional or two-dimensional gels include the destaining of an excised gel piece, followed by an overnight in-gel enzyme digestion. The aims of this study were to determine whether: (1) stained gels can be used without any destaining for trypsin digestion and mass spectrometry (MS); (2) tryptic peptides can be recovered from a matrix-assisted laser desorption/ionization (MALDI) target plate for a subsequent analysis with liquid chromatography (LC) coupled to an electrospray ionization (ESI) quadrupole ion trap MS; and (3) an overnight in-gel digestion is necessary for protein characterization with MS. These three strategies would significantly improve sample throughput. Cerebrospinal fluid (CSF) was the model biological fluid used to develop these methods. CSF was desalted by gel filtration, and CSF proteins were separated by two-dimensional gel electrophoresis (2DGE). Proteins were visualized with either silver, Coomassie, or Stains-All (counterstained with silver). None of the gels was destained. Protein spots were in-gel trypsin digested, the tryptic peptides were purified with ZipTip, and the peptides were analyzed with MALDI and ESI MS. Some of the samples that were spotted onto a wax-coated MALDI target plate were recovered and analyzed with ESI MS. All three types of stained gels were compatible with MALDI and ESI MS without any destaining. In-gel trypsin digestion can be performed in only 10-60 min for protein characterization with MS, the sample can be recovered from the MALDI target plate for use in ESI MS, and there was a 90% reduction in sample-processing time from overnight to ca. 3 h.  相似文献   

9.
Matrix‐assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a molecular imaging technology uniquely capable of untargeted measurement of proteins, lipids, and metabolites while retaining spatial information about their location in situ. This powerful combination of capabilities has the potential to bring a wealth of knowledge to the field of molecular histology. Translation of this innovative research tool into clinical laboratories requires the development of reliable sample preparation protocols for the analysis of proteins from formalin‐fixed paraffin‐embedded (FFPE) tissues, the standard preservation process in clinical pathology. Although ideal for stained tissue analysis by microscopy, the FFPE process cross‐links, disrupts, or can remove proteins from the tissue, making analysis of the protein content challenging. To date, reported approaches differ widely in process and efficacy. This tutorial presents a strategy derived from systematic testing and optimization of key parameters, for reproducible in situ tryptic digestion of proteins in FFPE tissue and subsequent MALDI IMS analysis. The approach describes a generalized method for FFPE tissues originating from virtually any source.  相似文献   

10.
Protein ions, after mass spectrometric separation, can be soft-landed into liquid surfaces with preservation of their native structures. Retention of biological activity is strongly favored in glycerol-based surfaces but not in self-assembled monolayer solid surfaces. Soft-landing efficiency for multiply-charged hexokinase ions was found to be some four times higher for a glycerol/fructose liquid surface than for a fluorinated self-assembled monolayer surface. Soft-landing into liquid surfaces is also shown to allow (1) protein purification, (2) on-surface identification of the soft-landed material using MALDI, and (3) protein identification by in-surface tryptic digestion. Pure lysozyme was successfully isolated from different mixtures including an oxidized, partially decomposed batch of the protein and a partial tryptic digest. Liquid glycerol/carbohydrate mixtures could be used directly to record MALDI spectra on the soft-landed compounds provided they were fortified in advance with traditional MALDI matrices such as p-nitroaniline and alpha-cyano-4-hydroxycinnamic acid. Various proteins were soft-landed and detected on-target using these types of liquid surface. Soft-landing of multiply-charged lysozyme ions onto fluorinated self-assembled monolayer surfaces was found to occur with a limited amount of neutralization, and trapped multiply-charged ions could be desorbed from the surface by laser desorption. Initial data is shown for a new approach to protein identification that combines top-down and bottom-up approaches by utilizing protein ion soft-landing from a protein mixture, followed by tryptic digestion of the landed material and detection of characteristic tryptic fragments by MALDI.  相似文献   

11.
Our previous work has demonstrated that reversed-phase chromatographic micro-beads can be used to capture proteins from complex biological matrices and the surface-bound proteins can be enzymatically digested for protein identification by mass spectrometry (MS). Here we examine the peptides generated from digestion of proteins bound to various types of micro-bead surfaces in order to determine the effects of surface chemistry and surface morphology on the digestion process. Detailed examinations of site cleavages and sequence coverage are carried out for a tryptic digestion of cytochrome c adsorbed on reversed-phase polystyrene divinylbenzene (Poros R2 beads) versus C(18) bonded-phase silica beads. It is shown that although the surface does not completely hinder the digestion of cleavage sites of the protein, the digestion products are clearly different than those obtained from a solution digest. Specifically, a partial digestion results from surface digestion, resulting in a greater number of missed cleavages than a comparable solution digest. Subsequent comparisons of peptide mass maps generated from the digestion of various proteins on surfaces with altering chemistry (C(4), C(8), C(18), and R2 beads), or with different surface morphology, were performed. The results reveal that surface chemistry plays only a minor role in affecting the peptide mass maps, and surface morphology had no noticeable effects on the resulting peptide mass maps. It is also shown that the mass spectrometric detection method used to analyze the digested peptides can significantly influence the information content on cleavage sites and the extent of sequence coverage. The use of a combination of MALDI, LC/off-line MALDI, and LC/ESI MS is demonstrated to be crucial in revealing subtle changes in the peptide mass maps.  相似文献   

12.
The highly diverse chemical structures of lipids make their analysis directly from biological tissue sections extremely challenging. Here, we report the in situ mapping and identification of lipids in a freshwater crustacean Gammarus fossarum using matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in combination with an additional separation dimension using ion mobility spectrometry (IMS). The high‐resolution trapped ion mobility spectrometry (TIMS) allowed efficient separation of isobaric/isomeric lipids showing distinct spatial distributions. The structures of the lipids were further characterized by MS/MS analysis. It is demonstrated that MALDI MSI with mobility separation is a powerful tool for distinguishing and localizing isobaric/isomeric lipids.  相似文献   

13.
Imaging mass spectrometry (IMS) is an emergent and innovative approach for measuring the composition, abundance and regioselectivity of molecules within an investigated area of fixed dimension. Although providing unprecedented molecular information compared with conventional MS techniques, enhancement of protein signature by IMS is still necessary and challenging. This paper demonstrates the combination of conventional organic washes with an optimized aqueous‐based buffer for tissue section preparation before matrix‐assisted laser desorption/ionization (MALDI) IMS of proteins. Based on a 500 mM ammonium formate in water–acetonitrile (9:1; v/v, 0.1% trifluororacetic acid, 0.1% Triton) solution, this buffer wash has shown to significantly enhance protein signature by profiling and IMS (~fourfold) when used after organic washes (70% EtOH followed by 90% EtOH), improving the quality and number of ion images obtained from mouse kidney and a 14‐day mouse fetus whole‐body tissue sections, while maintaining a similar reproducibility with conventional tissue rinsing. Even if some protein losses were observed, the data mining has demonstrated that it was primarily low abundant signals and that the number of new peaks found is greater with the described procedure. The proposed buffer has thus demonstrated to be of high efficiency for tissue section preparation providing novel and complementary information for direct on‐tissue MALDI analysis compared with solely conventional organic rinsing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Capillary electrophoresis (CE) was coupled off-line with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) for the analysis of proteins and peptides. CE fractions were collected directly on a matrix-coated MALDI target, using a sheath-flow interface. Protein adsorption during CE separations was prevented by coating the capillaries with the physically adsorbed, cationic polymer PolyE-323. The CE/MALDI-MS system was used for the analysis of model proteins and peptides at physiological pH as well as analysis of proteins in tear fluid. Moreover, tryptic on-target digestion of the collected protein fractions, with subsequent MALDI-MS and MS/MS peptide analysis, was demonstrated.  相似文献   

15.
MALDI imaging mass spectrometry (IMS) has become a valuable tool for the investigation of the content and distribution of molecular species in tissue specimens. Numerous methodological improvements have been made to optimize tissue section preparation and matrix deposition protocols, as well as MS data acquisition and processing. In particular for proteomic analyses, washing the tissue sections before matrix deposition has proven useful to improve spectral qualities by increasing ion yields and the number of signals observed. We systematically explore here the effects of several solvent combinations for washing tissue sections. To minimize experimental variability, all of the measurements were performed on serial sections cut from a single mouse liver tissue block. Several other key steps of the process such as matrix deposition and MS data acquisition and processing have also been automated or standardized. To assess efficacy, after each washing procedure the total ion current and number of peaks were counted from the resulting protein profiles. These results were correlated to on-tissue measurements obtained for lipids. Using similar approaches, several selected washing procedures were also tested for their ability to extend the lifetime as well as revive previously cut tissue sections. The effects of these washes on automated matrix deposition and crystallization behavior as well as their ability to preserve tissue histology were also studied. Finally, in a full-scale IMS study, these washing procedures were tested on a human renal cell carcinoma biopsy.  相似文献   

16.
Direct mass spectrometric analysis of complex biological samples is becoming an increasingly useful technique in the field of proteomics. Matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS) is a rapid and sensitive analytical tool well suited for obtaining molecular weights of peptides and proteins from complex samples. Here, a fast and simple approach to cellular protein profiling is described in which mammalian cells are lysed directly in the MALDI matrix 2,5-dihydroxybenzoic acid (DHB) and mass analyzed using MALDI-time of flight (TOF). Using the unique MALDI mass spectral "fingerprint" generated in these analyses, it is possible to differentiate among several different mammalian cell lines. A number of techniques, including MALDI-post source decay (PSD), MALDI tandem time-of-flight (TOF-TOF), MALDI-Fourier transform ion cyclotron resonance (FTICR), and nanoflow liquid chromatography followed by electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS) were employed to attempt to identify the proteins represented in the MALDI spectra. Performing a tryptic digestion of the supernatant of the cells lysed in DHB with subsequent LC-ESI-MS/MS analysis was by far the most successful method to identify proteins.  相似文献   

17.
A simple, rapid, straightforward and washing/separation free of in-solution digestion method for microwave-assisted tryptic digestion of proteins (cytochrome c, lysozyme and myoglobin) using bare TiO(2) nanoparticles (NPs) prepared in aqueous solution to serve as multifunctional nanoprobes in electrospray ionization mass spectrometry (ESI-MS) was demonstrated. The current approach is termed as 'on particle ionization/enrichment (OPIE)' and it can be applied in ESI-MS, atmospheric pressure-matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The bare TiO(2) NPs can assist, accelerate and effectively enhance the digestion efficiency, sequence coverage and detection sensitivity of peptides for the microwave-assisted tryptic digestion of proteins in ESI-MS. The reason is attributed to the fact that proteins or partially digested proteins are easily attracted or concentrated onto the surface of TiO(2) NPs, resulting in higher efficiency of digestion reactions in the microwave experiments. Besides, the TiO(2) NPs could act as a microwave absorber to accelerate and enrich the protein fragments in a short period of time (40-60 s) from the microwave experiments in ESI-MS. Furthermore, the bare TiO(2) NPs prepared in aqueous solution exhibit high adsorption capability toward the protein fragments (peptides); thus, the OPIE approach for detecting the digested protein fragments via ESI and MALDI ionization could be achieved. The current technique is also a washing and separation-free technique for accelerating and enriching microwave-assisted tryptic digestion of proteins in the ESI-MS and MALDI-MS. It exhibits potential to be widely applied to biotechnology and proteome research in the near future.  相似文献   

18.
One of the newly developed imaging mass spectrometry (IMS) technologies utilizes matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to map proteins in thin tissue sections. In this study, we evaluated the power of MALDI IMS as we developed it in our (Bruker) MALDI TOF (Reflex IV) and TOF-TOF (Ultraflex II) systems to study myelin patterns in the mouse central nervous system under normal and pathological conditions. MALDI IMS was applied to assess myelin basic protein (MBP) isoform-specific profiles in different regions throughout the mouse brain. The distribution of ions of m/z 14,144 and 18,447 displayed a striking resemblance with white matter histology and were identified as MBP isoform 8 and 5, respectively. In addition, we demonstrated a significant reduction of the MBP-8 peak intensity upon MALDI IMS analysis of focal ethidium bromide-induced demyelinated brain areas. Our MS images were validated by immunohistochemistry using MBP antibodies. This study underscores the potential of MALDI IMS to study the contribution of MBP to demyelinating diseases.  相似文献   

19.
The work presented in this report describes and demonstrates a protocol for protein imaging analysis of biological tissue using MALDI IMS where histological staining and MS analysis are performed on the same tissue section. Spatial image resolution is shown at 35 μm for sagittal sections of the cerebellum from rat brain.  相似文献   

20.
Iron oxide nanoparticles modified with oleate have been employed for the extraction of peptides and proteins from aqueous solution before matrix-assisted laser desorption/ionization (MALDI) mass spectrometric (MS) analysis. Adsorption of peptides and proteins onto the nanoparticles were mainly through electrostatic attraction and hydrophobic interaction. The analyte-adsorbed iron oxide nanoparticles could be efficiently collected from solution using a magnet. No elution step was needed. With this preconcentration strategy, the lowest detectable concentration of angiotensin I, insulin, and myoglobin in 500 microL of aqueous solution were 0.1 nM, 0.1 nM, and 10.0 nM, respectively. In addition, the nanoparticles could extract the analytes from solution with a high content of salt and surfactant, thus eliminating suppression effect during MALDI MS analysis. This method was successfully applied to concentrate the tryptic digest products of cytochrome c. In addition, the tryptic digestion of cytochrome c can be directly conducted on the iron oxide nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号