首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Xie J 《色谱》1999,17(3):232-235
 用气液色谱法测定了聚二甲基硅氧烷(PDMS)/溶剂、聚甲基丙烯酸甲酯(PMMA)/溶剂体系在不同温度下以质量分数表示的无限稀溶剂活度系数和Flory-Huggins相互作用参数。应用UNIFAC和UNIFAC-FV模型对PDMS/溶剂、PMMA/溶剂体系中以质量分数表示的无限稀溶剂活度系数进行了估算。结果表明,用这两个模型预测PDMS/溶剂、PMMA/溶剂体系中的无限稀溶剂活度系数有待修正或采用其它模型进行估算。  相似文献   

2.
谢建军 《色谱》1999,17(3):232
用气液色谱法测定了聚二甲基硅氧烷(PDMS)/溶剂、聚甲基丙烯酸甲酯(PMMA)/溶剂体系在不同温度下以质量分数表示的无限稀溶剂活度系数和Flory-Huggins相互作用参数。应用UNIFAC和UNIFAC-FV模型对PDMS/溶剂、PMMA/溶剂体系中以质量分数表示的无限稀溶剂活度系数进行了估算。结果表明,用这两个模型预测PDMS/溶剂、PMMA/溶剂体系中的无限稀溶剂活度系数有待修正或采用其它模型进行估算。  相似文献   

3.
计算离子液体溶液汽液相平衡的分子热力学模型   总被引:1,自引:0,他引:1  
用平均球近似理论、微扰理论和UNIFAC基团贡献方法分别考虑离子之间的长程静电作用、离子与溶剂之间的中程静电作用以及所有粒子之间的短程作用,本文提出了一种新的分子热力学模型,可用于离子液体溶液中溶剂活度系数的计算.通过对含烷基咪唑磷酸酯类离子液体与水、甲醇或乙醇组成的9个二元体系的饱和蒸汽压数据进行关联,获得了相关的模型参数,即溶剂的分子直径和基团之间的交互作用能参数.溶剂活度系数及饱和蒸汽压的计算结果与实验值的平均偏差为1.40%,符合良好,因此本模型可望用于含离子液体体系汽液相平衡的预测.  相似文献   

4.
水合物反应液中水活度系数的计算对水合物相平衡特性的研究及水合物技术的应用具有重要意义。 通过调研大量的国内外资料,概括了Margules、Wilson、NRTL、UNIQUAC及UNIFAC活度系数方程及其关联式等模型及其应用,结果表明,Margules模型常用于二元体系活度系数的计算,但对高温高压体系条件下的溶液适用性较差;Wilson模型参数回归误差稍大且不适于溶质与离子不能完全互溶体系;UNIQUAC模型在含水或咪唑类离子反应液体系中误差较大;多元离子体系相平衡的研究中常选择NRTL模型;UNIFAC模型拟合效果较好,可实现较高浓度体系活度系数的精确计算,应用较广泛。 水活度关联方程参数拟合效果好,且准确度高,但在高温高压水合物反应液体系中的计算仍是一个技术难点,是今后的研究方向。  相似文献   

5.
针对以往关于混合模型膜热力学的有序度参数与活度系数相互关系的经验性,从有序度参数的统计力学意义出发,应用平均场近似,通过经典热力学方法讨论了混合模型膜体系中有序度参数与活度系数两者之间的关系,并求得了其理论表达式。  相似文献   

6.
本文实验测定了n-C_(12)H_(26)-D_2EHPA在盐酸介质中萃取La~(3+)的平衡数据和H_2O-n-C_(12)H_(26)D_2EHPA体系的活度系数.用Pitzer方程计算水相中H_2O和H~+、La~(3+)的活度系数,用UNIFAC方程计算有机相各组分的活度系数,提出了萃取剂和金属萃合物的基因划分方法,经数据拟合,获得了能在全浓度范围内适用的萃取反应平衡常数和UNIFAC参数,用这些参数成功计算了n-C_(12)H_(26)-D_2EHPA萃取La~(3+)的平衡浓度.  相似文献   

7.
周玉杰  陈福明  李总成 《色谱》2002,20(6):526-529
 根据逆流保留方程可知,溶质的出峰顺序主要取决于其在互不混溶的两液相间分配系数的大小顺序。以饱和及不饱和脂肪酸乙酯、2,4 二硝基苯胺基脂肪醇和对硝基苯基葡萄糖甙等结构较为简单、极性差别较大的溶质系列为研究对象,应用修正的通用基团活度系数(UNIFAC)(Dortmund)模型,通过相平衡计算,预测了它们在含水或不含水的溶剂体系中分配系数的变化趋势,并与前人的工作进行了对比。结果表明,由该方法预测出的相似结构溶质分配系数的顺序基本上与实验值相同,其中对饱和脂肪酸乙酯在己烷 乙腈(体积比为1∶1)体系中分配系数的预测最好。  相似文献   

8.
研究了稀土离子在Amberlyst15、D001、XN1010多孔树脂内的自扩散。结果表明,扩散过程遵循二级分散扩散机制。用粒内扩散方程求算了有效粒内扩散系数e,将e分解为树脂孔道扩散系数p及树脂固相扩散系数s,p与该离子在外部溶液中的自扩散系数相近,而s接近于与实验用的多孔树脂交联度相同的凝胶树脂内的自扩散系数值。  相似文献   

9.
用热力学方法研究了酸性磷取剂与金属体系间的平衡计算模型,萃取体系的水相采用Pitzer半经验公式求算γCu^2+,有机相用热力学关系求出了水,正己烷和萃取剂的活度系数,实验结果用Schatchard-Hildebrand模型关系,并经回归处理,得到了萃取反应热力学平衡常数及萃合物的活度系数。  相似文献   

10.
本文使用自行设计的带机械搅拌器的平衡釜,在760mmHg压力下,测定了乙酸乙酯-水二元部份互溶物系的汽、液平衡数据.经热力学检验,该数据符合热力学一致性.用NRTL等13个活度系数方程进行热力学关联和计算,获得了满意的结果,尤以McCann方程和NRTL方程拟合的精度最佳.  相似文献   

11.
Theories based on free‐volume concepts have been developed to characterize the self and mutual‐diffusion coefficients of low molecular weight penetrants in rubbery and glassy polymer‐solvent systems. These theories are applicable over wide ranges of temperature and concentration. The capability of free‐volume theory to describe solvent diffusion in glassy polymers is reviewed in this article. Two alternative free‐volume based approaches used to evaluate solvent self‐diffusion coefficients in glassy polymer‐solvent systems are compared in terms of their differences and applicability. The models can correlate/predict temperature and concentration dependencies of the solvent diffusion coefficient. With the appropriate accompanying thermodynamic factors they can be used to model concentration profiles in mutual diffusion processes that are Fickian such as drying of coatings. The free‐volume methodology has been found to be consistent with molecular dynamics simulations. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

12.
The structural organization, the number of hydrogen bonds (H bond), and the self- and mutual diffusion coefficients of ethanol-water mixtures were studied by molecular dynamics simulation. It was found that both the numbers of H bonds per water and per ethanol decrease as the mole fraction of ethanol increases. The composition dependences and the relationships between the self- and the mutual diffusion coefficients were further discussed. The self-diffusion coefficient of water has a large drop as the concentration of ethanol increases from 0 to 0.3 and then it nearly keeps constant, while that of ethanol has a minimum around ethanol mole fraction of 0.5. The mutual diffusion coefficient could be divided into two parts, the kinematic factor and the thermodynamic factor. Both the kinematic and thermodynamic factors for ethanol-water mixtures were calculated. It was found that the change trend of mutual diffusion coefficients with the composition is mainly dependent on the thermodynamic factors.  相似文献   

13.
Measurements of osmotic coefficients, mutual diffusion coefficients, and conductivity were performed on the binary system sodium n-octyl sulfonate (C8SO3Na)–water at 25°C both below and above the micellar composition range. The osmotic coefficient data were obtained through vapor-pressure osmometry, while the Taylor dispersion method was used to measure diffusion coefficients. The mass equilibrium model was applied to this self-aggregating system, taking into account the deviation of the activity coefficients from the Debye–Hückel limiting law by using the Guggenheim corrective terms for mixed electrolyte solutions. The expressions derived from the model fit the experimental osmotic and diffusion coefficient data well, when the same values of aggregation number, fraction of condensed counterions, and equilibrium constant are used. Osmotic coefficients were also used to determine the thermodynamic factor required to compute the solute mobility from diffusion data. Conductivity data were used to test two theoretical models, namely, the Onsager–Fuoss and the Mean Spherical Approximation theories. Both models have been found to yield unsatisfactory fits to our experimental data and some arbitrary terms had to be applied to the theoretical expressions to obtain good agreement between experiment and theory.  相似文献   

14.
Mutual diffusion coefficients for eleven binary systems of simple organic liquids have been measured by laser light scattering. By separating the mutual diffusion coefficient into a kinetic diffusion coefficient and a thermodynamic factor, we have been able to analyze the dynamical information contained in the kinetic coefficient in terms of a simple hard sphere theory of molecular motion. The hard sphere model of the kinetic diffusion coefficient is shown to be accurate for ideal and moderately nonideal solutions, and for both spherical and very nonspherical molecules. Only for extremely nonideal solutions were we unable to interpret diffusion coefficient data by our methods of analysis.  相似文献   

15.
The electrochemical properties of a perfluorosulfonic acid (PFSA) membrane are estimated using a combination of molecular dynamics simulation and statistical thermodynamic model. We obtain all parameters in an ionic conductivity model from an atomistic simulation and remove all adjusted model parameters. From a microscopic point of view, the hydrated PFSA membrane shows micro‐phase segregation which separated into hydrophilic and hydrophobic phases. Our present work originates with this phenomenon and we treat this phase segregation as if it is a continuous phase for each of which the proton (H+) is transported inside the PFSA membrane/solvent (water and alcohols) mixture. The chemical potential for a given system is estimated using a molecular simulation technique to predict the van der Waals interaction energy between the polymer and solvent. In addition, the self diffusion coefficients are calculated from the molecular dynamics simulation. We study various polymer/solvent compositions to understand the concentration dependence of self diffusion coefficient. Our self diffusion coefficients and also the predicted final ionic conductivity agree well with previously reported experimental data. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1455–1463, 2011  相似文献   

16.
《Fluid Phase Equilibria》1999,166(1):101-110
An equation proposed by Darken, including the thermodynamic factor and tracer diffusion coefficients of solvent and solute, was adopted to correlate the diffusion coefficients for naphthalene and dimethylnaphthalene (DMN) isomers in supercritical carbon dioxide and the correlated results were compared with the experimental data. IML equation of state with mixing rules and combining rules containing two adjustable interaction parameters were used for calculation of the thermodynamic factor. By using the interaction parameters adjusted to the solubility data, the concentration dependence of diffusion coefficients and their anomaly near the critical point of carbon dioxide can be quantitatively represented. In order to improve the reliability of experimental results, some re-measured diffusion coefficient data for naphthalene, 2,6- and 2,7-DMN at 308.2 K, and new data for naphthalene at 318.2 K and for 2,3-DMN at 308.2 K are presented.  相似文献   

17.
The subject of this article is the combined interpretation of intradiffusion and mutual‐diffusion data for polymer–solvent mixtures in terms of integrals over velocity self‐correlation functions and velocity cross‐correlation functions. The combination of mutual‐diffusion, intradiffusion, and activity data allows the evaluation of velocity‐correlation coefficients (VCCs) and distinct‐diffusion coefficients in systems containing one monodisperse solute. This study is the first attempt to extend these approaches to polymers that are polydisperse solutes. Because of the polydispersity, this correlation analysis may become critical for polymers. Its application to polydisperse samples requires the reduction of intradiffusion and mutual‐diffusion coefficients to the same average. After such a reduction, the VCCs and distinct‐diffusion coefficients are evaluated for a homologous series of poly(ethylene glycol)s (PEGs). Attractive PEG–PEG interactions depend on the chain length and concentration of PEG. In this analysis, network formation in PEG–water systems appears to be a smooth process. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 43–51, 2002  相似文献   

18.
Small molecules in glassy polymers are considered to occupy sites with a distribution of free energies of dissolution. Then their diffusivity depends on concentration and temperature in the same way as it has been derived for hydrogen atoms in metallic glasses. For hydrogen it was shown that the tracer diffusion coefficient is proportional to the activity coefficient of the solute atoms. The latter can be evaluated from measured data of sorption of the small molecules in the polymer. Knowing this quantity, the thermodynamic factor can be calculated and the concentration dependence of the mutual diffusion coefficient is obtained in excellent agreement with published experimental results. New experimental results are presented for the diffusion coefficient of CO2 in Kapton and four polycarbonates (BPA-PC, BPZ-PC, TMBPA-PC, and TMC-PC) in the low CO2 pressure range of a few mbar up to 1 bar. The results are in agreement with the model developed for hydrogen. The reference diffusion coefficient, which is a fitting parameter of the model that is independent of the distribution of free energies is smallest for the polycarbonate BPZ-PC having a high γ-relaxation temperature. This correlation between the diffusion coefficient and the dynamics of the polymer can be found for other substituted polycarbonates as well. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2397–2408, 1997  相似文献   

19.
The gradient diffusion coefficients of recombinant human lactoferrin, a glycoprotein that is of commercial interest, have been extensively investigated theoretically and experimentally. A theoretical prediction was developed to allow calculation of the thermodynamic coefficient in terms of the electrostatic repulsive forces, London-van der Waals forces, entropic forces and additional interactions of unknown source and determination of the hydrodynamic coefficient by a perturbation theory method. In addition, dilute limit calculations were carried out for both of them. The thermodynamic and hydrodynamic coefficients were incorporated in the generalised Stokes-Einstein equation to calculate the gradient diffusion coefficient. Dynamic light scattering experiments were also conducted under different physiochemical conditions in which the gradient diffusion coefficients and the mean sizes of the macromolecules were measured. It was shown that of the theoretical approaches studied, good quantitative agreement between theory and experiment was found.  相似文献   

20.
We have measured the self‐diffusion coefficients of a series of oligo‐ and poly(ethylene glycol)s with molecular weights ranging from 150 to 10,000, in aqueous solutions and gels of poly(vinyl alcohol) (PVA), using the pulsed‐gradient spin‐echo NMR techniques. The PVA concentrations varied from 0 to 0.38 g/mL which ranged from dilute solutions to polymer gels. Effects of the diffusant size and polymer concentration on the self‐diffusion coefficients have been investigated. The temperature dependence of the self‐diffusion coefficients has also been studied for poly(ethylene glycol)s with molecular weights of 600 and 2,000. Several theoretical models based on different physical concepts are used to fit the experimental data. The suitability of these models in the interpretation of the self‐diffusion data is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2396–2403, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号