共查询到20条相似文献,搜索用时 15 毫秒
1.
In NMR spectroscopy, homonuclear scalar couplings normally lead to modulations of spin echoes that tend to interfere with the accurate determination of transverse relaxation rates by Carr-Purcell-Meiboom-Gill (CPMG) multiple refocusing experiments. Surprisingly, the echo modulations are largely cancelled when the refocusing pulses applied to the coupling partner deviate slightly from ideal pi rotations due to tilted effective radio-frequency (RF) fields, even at offsets that are much smaller than the radio-frequency amplitude. Experiments and simulations illustrate these effects for two-spin IS systems containing donor and acceptor (15)N nuclei I=N (D) and S=N(A) in RNA Watson-Crick base pairs with homonuclear scalar couplings J(IS)=(2h)J(N(D), N(A)) across the hydrogen bonds. 相似文献
2.
Recoupling strategies for anisotropic interactions enable the investigation of molecular structure, order and dynamics in a sensitive and site-specific fashion by solid-state NMR spectroscopy. Whereas magic-angle spinning (MAS) efficiently averages anisotropic interactions and enhances spectral resolution, recoupling pulse sequences selectively restore certain parts of rotor-modulated dipole-dipole couplings or chemical shift anisotropies (CSA). More specifically, it is possible to recouple either the omegaR- or the 2omegaR-modulated terms of an interaction Hamiltonian, which exhibit different orientation dependencies and, in this way, provide a means of distinguishing whether the observed NMR spectra are affected by molecular motion or by molecular orientation. Sideband patterns generated by reconversion rotor encoding allow for a precise and selective determination of coupling constants and anisotropies, which contain site-specific information on structure, orientation and/or dynamics of individual molecular segments. Corresponding recoupling schemes are presented in a common context, and the possibilities of exploiting these effects for the determination of order parameters of oriented materials, such as oriented polymer chains or extruded fibres of a discotic mesogen, are discussed. The obtained orientational order parameters are compared to results from two-dimensional wide angle X-ray scattering (WAXS). 相似文献
3.
By introducing dipolar recoupling methods to high-resolution magic-angle spinning (HRMAS) NMR spectroscopy, a class of experiments has been delevoped that allows the measurement of residual dipole-dipole couplings of approximately 1 Hz in weakly immobilized molecules. Using homonuclear 1H-1H recoupling, distances of up to approximately 8 A can be selectively determined, while heteronuclear 1H-13C recoupling provides access to dynamic order parameters of individual molecular segments on the order of approximately 10-3. The experiments are demonstrated on functionalized oligopeptides that are attached to polymer resins. 相似文献
4.
When applying multiple refocusing pulses to characterize the cross-correlated relaxation of heteronuclear multiple quantum coherence 2NxHx in biomolecules, the unavoidable effects of pulse imperfections are compensated by the scalar couplings between nitrogen atoms and protons. The experiment, which is useful as a tool for studying slow internal dynamics of biomolecules, greatly benefits from this compensation. The underlying effect is a manifestation of an interchange between three noncommuting components of the density operator. One perturbing Hamiltonian is counteracted by another, which leads to a nearly complete suppression of the perturbation. The effect proves to be an example of a hitherto unknown phenomenon in NMR spectroscopy. 相似文献
5.
Zorin V Ciesielski F Griffin DC Rittig M Bonev BB 《Magnetic resonance in chemistry : MRC》2010,48(12):925-934
Direct observation of J-couplings remains a challenge in high-resolution solid-state NMR. In some cases, it is possible to use Lee-Goldburg (LG) homonuclear decoupling during rare spin observation in MAS NMR correlation spectroscopy of lipid membranes to obtain J-resolved spectra in the direct dimension. In one simple implementation, a wide line separation-type (13)C-(1)H HETCOR can provide high-resolution (1)H/(13)C spectra, which are J-resolved in both dimensions. Coupling constants, (1)J(HC), obtained from (1)H doublets, can be compared with scaled (1)J(θ)(CH)-values obtained from the (13)C multiplets to assess the LG efficiency and scaling factor. The use of homonuclear decoupling during proton evolution, LG-HETCOR-LG, can provide J-values, at least in the rare spin dimension, and allows measurements in less mobile membrane environments. The LG-decoupled spectroscopic approach is demonstrated on pure dioleoylphosphatidylcholine (DOPC) membranes and used to investigate lipid mixtures of DOPC/cholesterol and DOPC/cholesterol/sphingomyelin. 相似文献
6.
High‐resolution solid‐state 109Ag and 31P NMR spectroscopy was used to investigate a series of silver dialkylphosphite salts, Ag(O)P(OR)2 (R = CH3, C2H5, C4H9 and C8H17), and determine whether they adopt keto, enol or dimer structures in the solid state. The silver chemical shift, CS, tensors and |J(109Ag, 31P)| values for these salts were determined using 109Ag (Ξ = 4.652%) NMR spectroscopy. The magnitudes of J(109Ag, 31P) range from 1250 ± 10 to 1318 ± 10 Hz and are the largest reported so far. These values indicate that phosphorus is directly bonded to silver for all these salts and thus exclude the enol structure. All 31P NMR spectra exhibit splittings due to indirect spin–spin coupling to 107Ag (I = 1/2, NA = 51.8%) and 109Ag (I = 1/2, NA = 48.2%). The 1J(109Ag, 31P) values measured by both 109Ag and 31P NMR spectroscopy agree within experimental error. Analysis of 31P NMR spectra of stationary samples for these salts allowed the determination of the phosphorus CS tensors. The absence of characteristic P?O stretching absorption bands near 1250 cm?1 in the IR spectra for these salts exclude the simple keto tautomer. Thus, the combination of solid‐state NMR and IR results indicate that these silver dialkylphosphite salts probably have a dimer structure. Values of silver and phosphorus CS tensors as well as 1J(109Ag, 31P) values for a dimer model calculated using the density functional theory (DFT) method are in agreement with the experimental observations. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
7.
8.
S. P. Babailov 《Russian Chemical Bulletin》2006,55(10):1691-1702
Modern NMR-based methods of studying the kinetics and mechanisms of reversible photochemical reactions in solutions are surveyed.
Detailed consideration of peculiar features of the experimental techniques based on NMR lineshape analysis and double resonance
NMR and used for the determination of the effective rate constants for and quantum yields of photoinduced chemical exchange
processes is presented.
Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1631–1641, October, 2006. 相似文献
9.
《Magnetic resonance in chemistry : MRC》2018,56(4):230-250
Two‐dimensional J‐resolved (Jres) NMR experiments offer a simple, user‐friendly spectral representation where the information of coupling constants and chemical shifts are separated into two orthogonal frequency axis. Since its initial proposal 40 years ago, Jres has been the focus of considerable interest both in improving the basic pulse sequence and in its successful application to a wide range of studies. Here, the latest developments in the design of novel Jres pulse schemes are reviewed, mainly focusing on obtaining pure absorption lineshapes, minimizing strong coupling artifacts, and also optimizing sensitivity and experimental measurements. A discussion of several Jres versions for the accurate measurement of a different number of homonuclear (JHH) and heteronuclear (JCH) coupling constants is presented, accompanied by some illustrative examples. 相似文献
10.
Krivdin LB 《Magnetic resonance in chemistry : MRC》2004,42(11):919-930
A comprehensive theoretical study of nine classical caged polycycloalkanes (tetrahedrane, prismane, homoprismane, quadricyclane, cubane, pentaprismane, hexaprismane, adamantane and diamantane) was carried out with special focus on the structural behavior of their J(C,C) values calculated at the SOPPA level. The structural behavior of J(C,C) in small carbocages is dominated by steric strain whereas in medium-sized polycycloalkanes the J(C,C) values show no marked peculiarities and follow several well-defined structural trends typical of other alicyclic compounds. 相似文献
11.
《Magnetic resonance in chemistry : MRC》2003,41(6):448-454
In this paper, we investigate the application of coupled LC–NMR to the identification of low‐level impurities. We consider the absolute sensitivity of the technique with our instrumentation, and how this is degraded by peak broadening on and after column, and we compare the sensitivity and other aspects of LC–NMR with a more classical approach of impurity isolation and tube NMR. We show that despite the undoubted advantages of LC–NMR in many situations, for the identification of very low‐level impurities it may not always be the most efficient overall approach when all factors are considered. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
12.
Lorena M. A. Silva Elenilson G. A. Filho Sérgio S. Thomasi Bianca F. Silva Antonio G. Ferreira Tiago Venâncio 《Magnetic resonance in chemistry : MRC》2013,51(9):541-548
The informal (and/or illegal) e‐commerce of pharmaceutical formulations causes problems that governmental health agencies find hard to control, one of which concerns formulas sold as natural products. The purpose of this work was to explore the advantages and limitations of DOSY and HPLC–UV–SPE–NMR. These techniques were used to identify the components of a formula illegally marketed in Brazil as an herbal medicine possessing anti‐inflammatory and analgesic properties. DOSY was able to detect the major components present at higher concentrations. Complete characterization was achieved using HPLC–UV–SPE–NMR, and 1D and 2D NMR analyses enabled the identification of known synthetic drugs. These were ranitidine and a mixture of orphenadrine citrate, piroxicam, and dexamethasone, which are co‐formulated in a remedy called Rheumazim that is used to relieve severe pain, but it is prohibited in Brazil because of a lack of sufficient pharmacokinetic and pharmacodynamic information. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
13.
Two‐component relativistic density functional theory (DFT) with the second‐order Douglas–Kroll–Hess (DKH2) one‐electron Hamiltonian was applied to the calculation of nuclear magnetic resonance (NMR) shielding constant. Large basis set dependence was observed in the shielding constant of Xe atom. The DKH2‐DFT‐calculated shielding constants of I and Xe in HI, I2, CuI, AgI, and XeF2 agree well with those obtained by the four‐component relativistic theory and experiments. The Au NMR shielding constant in AuF is extremely more positive than in AuCl, AuBr, and AuI, as reported recently. This extremely positive shielding constant arises from the much larger Fermi contact (FC) term of AuF than in others. Interestingly, the absolute values of the paramagnetic and the FC terms are considerably larger in CuF and AuF than in others. The large paramagnetic term of AuF arises from the large d‐components in the Au dπ –F pπ and Au sdσ–F pσ molecular orbitals (MOs). The large FC term in AuF arises from the small energy difference between the Au sdσ + F pσ and Au sdσ–F pσ MOs. The second‐order magnetically relativistic effect, which is the effect of DKH2 magnetic operator, is important even in CuF. This effect considerably improves the overestimation of the spin‐orbit effect calculated by the Breit–Pauli magnetic operator. © 2013 Wiley Periodicals, Inc. 相似文献
14.
We present the magnetic and optical properties of various combinations of ordered spin state configurations between low-spin (LS) state, intermediate-spin (IS) state, and high-spin (HS) state of LaCoO(3) . In this study, we use the state-of-the-art first principles calculations based on generalized gradient (GGA) + Hubbard U approach. The excited-state properties of different spin configurations of LaCoO(3) such as the X-ray absorption spectra, optical conductivity, reflectivity, and electron energy loss are calculated. We have demonstrated that the optical spectra results can be used for analyzing the spin state of Co(3+) ion. The first specie is the local excitation of IS cobalt ions in the LS ground state. The second excitation leads to the stabilization of the mixed IS/HS Co(3+) metallic state. At low temperature, the comparison between O 2p and Co 3d projected density of states with the experimental valence band spectra indicates significant IS Co(3+) ions and this is in sharp contrast to the HS state which is negligible. The line shape of O 2s and Co 3d core level spectra are well reproduced in this study. The present results are in excellent agreement with the available experimental data. The variation in the spectra of different configurations of LaCoO(3) suggests a changing in the spin state as the temperature is enhanced from 90 to 500 K. 相似文献
15.
Eugene Sebastian J. Nidiry 《Magnetic resonance in chemistry : MRC》2012,50(7):511-514
Octadecyl p‐coumarates undergo E–Z isomerization in daylight. Although 1H NMR, 13C NMR and 1H–1H COSY gave indications about this isomerization, the overlapping of some signals in the 1H NMR of aromatic region prevented the delineation of signals of the individual isomers. However, heteronuclear spin quantum coupling correlation (HSQC) with the unique feature of two sets of nearby δC–δH correlations gave conclusive evidence for this isomerization and helped in the delineation of 1H NMR and 13C NMR signals of E‐octadecyl p‐coumarate and Z‐octadecyl p‐coumarate. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
16.
Simone Cavadini Sasa Antonijevic Adonis Lupulescu Geoffrey Bodenhausen 《Chemphyschem》2007,8(9):1363-1374
NMR spectra of (14)N (spin I=1) are obtained by indirect detection in powders spinning at the magic angle. The method relies on the transfer of coherence from a neighboring "spy" nucleus with S=1/2, such as (13)C or (1)H, to single- or double-quantum transitions of (14)N nuclei. The transfer of coherence can occur through a combination of scalar and residual dipolar splittings (RDS); the latter are also known as second-order quadrupole-dipole cross terms. The two-dimensional NMR spectra reveal powder patterns determined by second- and third-order quadrupolar couplings. These spectra depend on the quadrupolar coupling constant C(Q) (typically a few megahertz), on the asymmetry parameter eta(Q) of the (14)N nucleus, and on the orientation of the internuclear vector r(IS) between the I ((14)N) and S (spy) nuclei with respect to the quadrupolar tensor. These parameters, which can be subject to motional averaging, can reveal valuable information about the structure and dynamics of nitrogen-containing solids. Application of this technique to various amino acids, either enriched in (13)C or with natural carbon isotope abundance, with spectra recorded at various magnetic fields, illustrates the scope of the method. 相似文献
17.
Laura Castañar Eduard Sistaré Albert Virgili R. Thomas Williamson Teodor Parella 《Magnetic resonance in chemistry : MRC》2015,53(2):115-119
The amplitude and the phase of cross peaks in conventional 2D HSQC experiments are modulated by both proton–proton, J(HH), and proton–carbon, 1J(CH), coupling constants. It is shown by spectral simulation and experimentally that J(HH) interferences are suppressed in a novel perfect‐HSQC pulse scheme that incorporates perfect‐echo INEPT periods. The improved 2D spectra afford pure in‐phase cross peaks with respect to 1J(CH) and J(HH), irrespective of the experiment delay optimization. In addition, peak volumes are not attenuated by the influence of J(HH), rendering practical issues such as phase correction, multiplet analysis, and signal integration more appropriate. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
18.
The structures, electron distributions and dissociation energies of gas-phase ternary complexes of Cu(II) with 2,2'-bipyridine and leucine, isoleucine and lysine were addressed by density functional theory using the hybrid B3LYP functional, effective core potentials and the 6-31 + G(d) and LANL2DZ basis sets. The calculations confirm the previously suggested structures, in which amino acid carboxylates coordinate to the Cu atom by the carboxylate and alpha-amino groups in square-planar complexes. The dissociation energies for consecutive eliminations of CO(2) and alkyl radicals from isomeric singly charged complexes of leucine and isoleucine correlate with the ion relative abundances observed in collisionally activated dissociation mass spectra. Doubly charged lysine complexes show extremely low dissociation energies that are consistent with the <1 eV center-of-mass collision energies that were used in previous CAD studies. The calculated charge and spin densities point to radical-induced dissociations of singly charged complexes with an open-electron shell. In contrast, the unpaired electron is virtually inert in doubly charged, open-shell complexes that undergo charge-induced, spin-remote dissociations in the amino acid residues. 相似文献
19.
Marta Bugaj Piotr A. Baran Piotr Bernatowicz Patrycja Brożek Krystyna Kamieńska‐Trela Adam Krówczyński Bohdan Kamieński 《Magnetic resonance in chemistry : MRC》2009,47(10):830-842
A series of aryl‐substituted enaminoketones and their thio analogues in CDCl3 solution and in the solid state were studied by the use of high‐resolution 1H and 13C as well as 13C cross polarization magic angle spinning (CP MAS) NMR spectra in combination with gauge including atomic orbitals‐density functional theory (GIAO‐DFT) calculations performed at the B3PW91/6–311 + + G(d,p) level of theory using the B3PW91/6‐311 + + G(d,p)‐optimized geometries. The analysis of the 13C NMR spectra in solution was done by using the Incredible Natural Abundance DoublE QUAntum Transfer Experiment (INADEQUATE) technique, whereas trends observed in the 13C shielding constants, calculated for the compounds studied, were a great help in assigning most of the signals in the 13C CP MAS NMR spectra. It was established on the basis of the experimental and theoretical NMR data that both groups of compounds exist in the form of Z‐s‐Z‐s‐E isomers in CDCl3 solution as well as in the solid state, with the NH hydrogen atom involved in intramolecular hydrogen bonding. This conclusion is in agreement with the fact that some of the compounds studied reveal liquid‐crystalline properties. Three‐bond H, H and C, H coupling constants measured in solution played a crucial role in the structure elucidation. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
20.
Tormena CF Vilcachagua JD Karcher V Rittner R Contreras RH 《Magnetic resonance in chemistry : MRC》2007,45(7):590-594
Theoretical and experimental 2JHH coupling constants for six-membered rings containing oxygen or sulfur atoms were studied to investigate whether the 2JHH coupling constant can be used for stereoelectronic studies in heterocyclohexanes, instead of 1JCH, because it is well known that experimental measurements of 2JHH coupling constants at low temperature are much easier to determine than the corresponding 1JCH couplings. For all compounds studied here, the 2JHH coupling constants are affected by sigma*C-H antibonding occupancy together with bond angle effects. For cyclohexane and oxygen-containing compounds, the influence on the geminal coupling for Hax-C2-Heq and for X1-C2-X3 (X=O and C), bond angles are more pronounced than for the sulfur derivatives. 相似文献