首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turbulent mixing of a single jet, twin jets, triple jets and multiple jets is synthetically analysed in this paper. Chung's kinetic theory of turbulence and a modified Green's function are employed to solve this problem. The probability density function of fluid elements in the velocity space of multiple plane jets and the corresponding turbulence correlations are revealed in this analysis. The calculated results are found to be in good agreement with the available experimental data. The internal physical structure of the turbulent mixing mechanism seems better understood via the kinetic theory approach. The present study provides the fundamentals for theoretical understanding of multiple-jet turbulent mixing and further application to multiple-jet turbulent combustion analysis.  相似文献   

2.
The present study is concerned with adopting of a Talbot effect-based technique for analyzing flows with random phase inhomogeneities. It is shown that this method is a powerful tool for diagnostics of turbulent flows. The potential of the technique is illustrated by measuring mean and fluctuating values of admixture concentration of two-dimensional turbulent helium jet issuing into the ambient air. Averaged air and helium concentrations throughout the flow field are determined using local light refraction measurements with a high spatial resolution from a long-exposed Talbot image of the jet. The analysis of light intensity distributions in light spots of a Talbot-image shows that the jet turbulence is inhomogeneous and anisotropic. Quantitative information on rms fluctuations of concentration gradients throughout the flow field is obtained from local photometric measurements at the Talbot light spots.  相似文献   

3.
A numerical calculation is carried out by the finite-difference method based on proposed equations for a turbulent submerged jet containing an admixture of solid particles. The relative longitudinal particle velocity and the influence of particles on the turbulence intensity are taken into account. The calculated results adequately agree with available experimental data. A turbulent two-phase jet is examined in [1] on the basis of the theory for a variable density jet, assuming equal mean velocities for the gas and particles and not considering the influence of particles on the turbulence intensity. Particles are analogously taken into account by a noninertial gas mixture in [2, 3], and a particle Schmidt number of 1.1 is assumed in [4]. A model is proposed in [5] which takes into account the influence of particles on the turbulence intensity of the gas phase. Problems concerning the initial and main sections of a submerged jet were solved in [6] by the integral method on the basis of this model and the assumed equality of the mean velocities of the gas and particles. Turbulent mixing of homogeneous two-phase flows with allowance made for dynamic nonequilibrium of the phases is considered in [7]. However, the neglect of turbulent transfer of particle mass and momentum led to a physically unrealistic solution for the particle concentration in the far field of the mixture. A two-phase jet is considered in the present work on the basis of the theory of a two-velocity continuous medium [8, 9] with allowance made for turbulent transfer of particle mass and momentum. The influence of particles on the turbulence intensity of the gas phase is taken into account with the model of [5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 57–63, September–October, 1976.The author acknowledges useful comments and discussion.of the work by G. N. Abramovich and participants of his seminar. The author sincerely thanks I. N. Murzinov for scientific supervision of the work.  相似文献   

4.
Density effects on isothermal jet mixing in confined swirling flow are investigated. The experiment is carried out with helium/air as the jet fluid in the same facility as that used by So et al. (1984a, b) and the test conditions are chosen to be the same as before. Contrary to the homogeneous mixing results, the helium jet is preserved up to 40 jet diameters downstream. The behavior of the mean and turbulence field depends highly on the initial jet velocity. Since the jets are fully turbulent and the jet momentum fluxes for inhomogeneous mixing are less than those for homogeneous mixing, the cause of this difference in behavior is directly attributed to the combined action of density difference and swirl. In spite of this, near isotropy of the turbulence field is again observed at 40 jet diameters downstream.  相似文献   

5.
Direct numerical simulations associated with mixing in constant-density round coaxial jets are performed. They are validated by comparison against laboratory experiments. The mixing process is studied by seeding a passive tracer first in the outer annular jet, then in the inner jet. We demonstrate the important role played by coherent vortices in the mixing mechanisms. The turbulent mixing exhibits an intermittent character as a consequence of fluid ejections caused by the counter-rotating streamwise vortices. We quantify also the domination of the outer jet and show that the fluid issuing from the central jet remains confined. To cite this article: G. Balarac, M. Si-Ameur, C. R. Mecanique 333 (2005).  相似文献   

6.
Experimental characterization of non-premixed turbulent jet propane flames   总被引:1,自引:0,他引:1  
This paper reports an experimental study conducted on turbulent jet propane flames aiming at further understanding of turbulent structure in non-premixed slow-chemistry combustion systems. Measurements of mean and fluctuating velocity and temperature fields, mean concentration of major chemical species, correlation between velocity and temperature fluctuations, and dissipation of temperature fluctuations are reported in a turbulent round jet non-premixed propane flame, Re=20 400 and 37 600, issuing vertically in still air. The experimental conditions were designed to provide a complete definition of the upstream boundary conditions in the measurement domain for the purpose of validating computational models. The measured data depicts useful flow field information for describing turbulent non-premixed slow-chemistry flames. Velocity–temperature correlation measurements show turbulent heat fluxes tended to be restricted to the mixing layer where large temperature gradients occurred. Observations of non-gradient diffusion of heat at x/D=10 were verified. Temperature fluctuation dissipation, χ, showed the highest values in the shear layer, where the variance of temperature fluctuations was maximum and combustion occurred. The isotropy between the temperature dissipation in the radial and tangential directions was confirmed. By contrast, the observed anisotropy between axial and radial directions of dissipation suggests the influence of large structures in the entrainment shear layer on the production of temperature fluctuations in the flame region. The value of the normalized scalar dissipation at the stoichiometric mixture fraction surface, χst, was calculated, and ranges between 2 and 4 s−1. The measured data were used to estimate the budgets in the balance equations for turbulent kinetic energy, Reynolds shear stresses, turbulent heat flux and temperature variance, quantifying the mechanisms involved in the generation of turbulence as well as in the transport of the temperature.  相似文献   

7.
A new theoretical model has been developed to explain the behavior of transverse particle transport in turbulent flow of a dilute two-phase suspension due to turbulent diffusion. This model is based on the ability of a particle to respond to surrounding fluid motion and depends on particle size and density relative to the carrier fluid, the fractional variation in particle concentration in the transverse direction as well as the existing turbulence structure of the surrounding fluid. The model developed in this investigation has been formulated by dividing the transverse fluid velocity, as seen by a particular particle, into two superimposed components representing, respectively, the transverse turbulent fluid fluctuations and an apparent transverse local fluid drifting velocity due to the effect on the transverse oscillatory component of fluid motion by the transverse concentration distribution of particles. A subsequent paper will show that the theory (together with other new results on the concentration effects on particle drag and lift and fluid turbulence properties) can help to explain the phenomena measured previously.  相似文献   

8.
Measurements of mean velocity components, turbulent intensity, and Reynolds shear stress are presented in a turbulent lifted H2/N2 jet flame as well as non-reacting air jet issuing into a vitiated co-flow by laser doppler velocimetry (LDV) technique. The objectives of this paper are to obtain a velocity data base missing in the previous experiment data of the Dibble burner and so provide initial and flow field data for evaluating the validity of various numerical codes describing the turbulent partially premixed flames on this burner. It is found that the potential core is shortened due to the high ratio of jet density to co-flow density in the non-reacting cases. However, the existence of flame suppressed turbulence in the upstream region of the jet dominates the length of potential core in the reacting cases. At the centreline, the normalized axial velocities in the reacting cases are higher than the non-reacting cases, and the relative turbulent intensities of the reacting flow are smaller than in the non-reacting flow, where a self-preserving behaviour for the relative turbulent intensities exists at the downstream region. The profiles of mean axial velocity in the lifted flame distribute between the non-reacting jet and non-premixed flame both in the axial and radial distributions. The radial distributions of turbulent kinetic energy in the lifted flames exhibit a change in distributions indicating the difference of stabilisation mechanisms of the two lifted flame. The experimental results presented will guide the development of an improved modelling for such flames.  相似文献   

9.
Magnetic resonance imaging (MRI) measurements in liquid flows provide highly detailed 3D mean velocity and concentration data in complex turbulent mixing flow applications. The scalar transport analogy is applied to infer the mean temperature distribution in high speed gas flows directly from the MRI concentration measurements in liquid. Compressibility effects on turbulent mixing are known to be weak for simple flows at high subsonic Mach number, and it was not known if this would hold in more complex flows characteristic of practical applications. Furthermore, the MRI measurements are often done at lower Reynolds number than the compressible application, although both are generally done in fully turbulent flows. The hypothesis is that the conclusions from MRI measurements performed in water are transferable to high subsonic Mach number applications. The present experiment is designed to compare stagnation temperature measurements in high speed airflow (M = 0.7) to concentration measurements in an identical water flow apparatus. The flow configuration was a low aspect ratio wall jet with a thick splitter plate producing a 3D complex downstream flow mixing the wall-jet fluid with the mainstream flow. The three-dimensional velocity field is documented using magnetic resonance velocimetry in the water experiment, and the mixing is quantified by measuring the mean concentration distribution of wall-jet fluid marked with dissolved copper sulfate. The airflow experiments are operated with a temperature difference between the main stream and the wall jet. Profiles of the stagnation temperature are measured with a shielded thermocouple probe. The results show excellent agreement between normalized temperature and concentration profiles after correction of the temperature measurements for the effects of energy separation. The agreement is within 1 % near the edges of the mixing layer, which suggests that the mixing characteristics of the large scale turbulence structures are the same in the two flows.  相似文献   

10.
In present research, two turbulent opposed impinging air jets issuing from triangular nozzles with fixed and variable exit velocity ratios and different nozzle-to-nozzle distances have been studied numerically and then compared with rectangular and circular nozzles. The finite volume method has been applied for solving mass and momentum equations. The turbulence model being used here is k-ε RNG. Distributions of pressure, turbulence, kinetic energy and its dissipation rate in various regions especially on the impingement regions have been obtained with high accuracy. Study of the nozzle geometries has shown the advantage of triangular nozzles over other geometries. First, the triangle’s base in nozzle geometry has an important role in our study case which, mixing two flows and regions with high turbulence intensity, directly depends on it. Second, our results show that circular and rectangular nozzles have less efficiency than triangular nozzles in mixing applications. Third and last, it was found that the radial jet being created by opposed jets has some similarities to free jets. In this investigation, air in standard atmospheric pressure has been applied as working fluid.  相似文献   

11.
A numerical study is performed on a two-dimensional confined opposed-jet configuration to gain basic understanding of the flow and mixing characteristics of pulsed turbulent opposed-jet streams. The sinusoidal pulsating flows with different temperature are imposed at opposed-jet inlets, which are mixed with each other in a confined flow channel. The current mathematical model taking the effect of temperature-dependent thermo-physical properties of fluid into account can present a good prediction for opposed-jet streams compared with experimental data. The numerical results indicate that introduction of temperature difference between opposed jet flows can lead to an asymmetric flow field immediately after jet impact, and the sinusoidal flow pulsations can effectively enhance mixing rate of opposed jets. Parameter studies are conducted for optimization of pulsed opposed jets. The effect of Reynolds number and flow pulsation as well as the configuration geometry on the mixing performance are discussed in detail. Examination of the flow and thermal field shows that the mixing rate is highly dependent on the vortex-induced mixing and residence time of jet fluid in the exit channel.  相似文献   

12.
Stratified flows with small density difference commonly exist in geophysical and engineering applications, which often involve interaction of turbulence and buoyancy effect. A combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system is developed to measure the velocity and density fields in a dense jet discharged horizontally into a tank filled with light fluid. The illumination of PIV particles and excitation of PLIF dye are achieved by a dual-head pulsed Nd:YAG laser and two CCD cameras with a set of optical filters. The procedure for matching refractive indexes of two fluids and calibration of the combined system are presented, as well as a quantitative analysis of the measurement uncertainties. The flow structures and mixing dynamics within the central vertical plane are studied by examining the averaged parameters, turbulent kinetic energy budget, and modeling of momentum flux and buoyancy flux. At downstream, profiles of velocity and density display strong asymmetry with respect to its center. This is attributed to the fact that stable stratification reduces mixing and unstable stratification enhances mixing. In stable stratification region, most of turbulence production is consumed by mean-flow convection, whereas in unstable stratification region, turbulence production is nearly balanced by viscous dissipation. Experimental data also indicate that at downstream locations, mixing length model performs better in mixing zone of stable stratification regions, whereas in other regions, eddy viscosity/diffusivity models with static model coefficients represent effectively momentum and buoyancy flux terms. The measured turbulent Prandtl number displays strong spatial variation in the stratified jet.  相似文献   

13.
 A novel whole-field optical method for mapping three-dimensional intensity of a turbulent density field is described. The method is based on the measurement of the local contrast degradation of Moiré fringes due to turbulence. For mapping the three-dimensional turbulence the tomographic technique was applied. The method was demonstrated by measuring the structure function constant of a hot, turbulent density jet. The results clearly show the high turbulent regions in the mixing shear layer at the jet edges and in the jet center, which corresponds to the wake behind the heating element of the jet generator. The optical setup is simple and can be automated. The method fits the tomographic technique and a high number of data values can be obtained from one record. Received: 18 June 1996/Accepted: 30 December 1996  相似文献   

14.
The solid particle dispersion in saltating motion is studied in an homogeneous turbulence and in a turbulent boundary layer. The fluid velocity along the particle trajectory is estimated using a continuous stochastic differential equation in which the correlation integral time takes into account gravity and inertia effects. As far as the boundary layer is concerned, the aerodynamic entrainment of particles and the rebound are modelised as random variables with Gaussian probability density functions. Compared with experimental results, the numerical results show good agreement for dispersion, although velocity fluctuations are slightly under evaluated. To cite this article: C. Aguirre et al., C. R. Mecanique 332 (2004).  相似文献   

15.
16.
A single-shot laser Mie scattering technique is used to measure the instantaneous radial distributions of seed particles in the early development zone of turbulent jets with various bulk densities issuing into a slow coflowing air stream. Instantaneous radial profiles of mixture fraction are derived from the measured distributions with either the jet fluid or only the coflow air seeded, depending on the investigated zone. Radial gradients and autocorrelation profiles are analyzed to study the scalar dissipation and the mixing length scale respectively. Self-similar behaviour is investigated by plotting the centreline scalar decay as a function of a reduced abscissa, which accounts for the axial variation of the jet density in its early development. As the density is simultaneously derivable from the mixture fraction data, direct comparisons between Favre and Reynolds averaged values are obtained which show very significant differences in the near field.  相似文献   

17.
18.
陈金峰  张金龙  杨文武  董宇红 《力学学报》2022,54(10):2773-2783
潜流带中污染物质交换与输运特性是影响水资源环境的重要问题之一. 本文对底部为高渗透沉积层的三维槽道振荡流高Schmidt数传质问题进行了大涡模拟研究. 采用动力学亚格子模型来封闭滤波后的三维不可压缩Navier-Stokes方程以及污染物输运方程, 同时采用修正的Darcy-Brinkman-Forcheimer模型来描述沉淀有锌离子污染溶质的可渗透沉积层. 通过对沉积层内外流场和浓度场的统计特性以及瞬态结构的分析, 探究了上覆水体中振荡流驱动作用对污染物输运的动力学影响以及扩散率随振荡周期和振荡角的变化规律. 研究结果表明, 浓度通量中的湍流浓度分量在垂向物质交换中起主导作用, 流向、展向速度, 湍流强度和污染物浓度的波动跟随振荡驱动力呈现准周期变化, 同时发现沉积层?水交界面处的湍流浓度通量与法向湍流强度两者之间的变化具有明确的相关性. 并且在较大振荡角和低频振荡的情况下, 沉积层?水交界面处的有效扩散率增大, 这主要是来自于沉积层?水交界面处流体的猝发行为有效促进了湍流混合和物质交换, 进而增强了污染物的垂向输运.   相似文献   

19.
The near field mean flow and turbulence characteristics of a turbulent jet of air issuing from a sharp-edged isosceles triangular orifice into still air surroundings have been examined experimentally using hot-wire anemometry and a pitot-static tube. For comparison, some measurements were made in an equilateral triangular free jet and in a round free air jet, both of which also issued from sharp-edged orifices. The Reynolds number, based on the orifice equivalent diameter, was 1.84×105 in each jet. The three components of the mean velocity vector, the Reynolds normal and primary shear stresses, the one-dimensional energy spectra of the streamwise fluctuating velocity signals and the mean static pressure were measured. The mean streamwise vorticity, the half-velocity widths, the turbulence kinetic energy and the local shear in the mean streamwise velocity were obtained from the measured data. It was found that near field mixing in the equilateral triangular jet is faster than in the isosceles triangular and round jets. The mean streamwise vorticity field was found to be dominated by counter-rotating pairs of vortices, which influenced mixing and entrainment in the isosceles triangular jet. The one-dimensional energy spectra results indicated the presence of coherent structures in the near field of all three jets and that the equilateral triangular jet was more energetic than the isosceles triangular and round jets.  相似文献   

20.
A high-temperature turbulent jet in a cold crossflow is investigated with the help of two scale-resolving simulation approaches. This work aims at improving the methodologies used to predict the thermal footprint of exhaust gases issuing from helicopter engines onto the fuselage. Specific attention is brought to the capability of scale resolving simulations to correctly reproduce flow dynamics and turbulent mixing. Mean flow features, turbulent quantities and temperature fields are compared and validated against wind tunnel test measurements. In addition, the present work highlights the importance of synthetic turbulence injection at pipe inlet to obtain a fair prediction of both flow dynamics and temperature field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号