首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of sample exposure to UV laser irradiation on the matrix-assisted laser desorption—ionization (MALDI) mass spectra of different proteins are reported. The exposure is varied by irradiating the same sample spot with a differing number of UV laser pulses. The ion yield, mass resolution and internal energy content of ejected molecular ions are monitored as a function of the sample exposure. Other parameters that influence the MALDI spectra (and related to sample exposure) such as laser fluence, sample thickness, matrix-to-protein molar ratio, total deposited amount, and molecular mass of the protein, are also examined.  相似文献   

2.
A transmission geometry optical configuration allows for smaller laser spot size to facilitate high‐resolution matrix‐assisted laser/desorption ionization (MALDI) mass spectrometry. This increase in spatial resolution (ie, smaller laser spot size) is often associated with a decrease in analyte signal. MALDI‐2 is a post‐ionization technique, which irradiates ions and neutrals generated in the initial MALDI plume with a second orthogonal laser pulse, and has been shown to improve sensitivity. Herein, we have modified a commercial Orbitrap mass spectrometer to incorporate a transmission geometry MALDI source with MALDI‐2 capabilities to improve sensitivity at higher spatial resolutions.  相似文献   

3.
The molecular weight distribution of the asphaltene fractions of two types of crude oils from two different Italian fields (samples 1 and 2) was investigated. The analytical tools used to perform these analyses were matrix assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI) mass spectrometry. After observing that the use of the matrix (as well as the addition of Ag+) did not improve the quality of the data compared to that obtained in LDI conditions, all further measurements were performed with the latter technique. Operating under usual conditions of laser power and delay time, a very low resolution was observed, showing only macroscopic differences between the two samples in the molecular weight distribution of the different components. An accurate study on the possible reasons of this undesirable behavior indicates that it can originate from space charge phenomena occurring either in the ion source region or during the flight. A valid parameterization of the delay time and the laser power allowed higher quality spectra to be obtained. Surface-enhanced laser desorption ionization (SELDI) measurements were also performed using normal phase (silica) as the sample holder surface. Under these conditions, better results are obtained, proving that the sample-surface interaction is important to achieve, by means of laser irradiation, a homogeneous set of product ions. Both asphaltene samples were fractionated in five subfractions by gel-permeation chromatography (GPC) to obtain a better separation of the molecular weight distributions; the related spectra confirmed these findings. By using different approaches, relevant and reproducible differences between the asphaltene fractions of the two oil samples were observed.  相似文献   

4.
A novel method combining infrared (IR) laser desorption with tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (LD/VUV PIMS) is applied to characterize a number of petroleum saturates samples from Lungu atmospheric residue (LGAR) under different treatment procedures. The mass spectra of these saturates are well resolved with even masses as the dominant ions and are clearly sample‐dependent. In order to assess the ability of IR LD/VUV PIMS to determine the average molecular weight of heavy oils, the dependence of the measured molecular weight distributions on the VUV ionization photon energies is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The ionization mechanisms involved in matrix-assisted ultraviolet laser desorption/ionization (MALDI) were studied with a time-of-flight mass spectrometer. When protonated or cationized quasimolecular ions generated by MALDI are not extracted promptly, their abundance is a function of the delay time between laser irradiation and ion extraction, maximizing at an optimum delay time (DTM) of a few hundred nanoseconds. The ion abundance at DTM exceeds that of prompt extraction by a factor of 2 or more. Increasing the cation density near the sample surface reduces the DTM, whereas increasing the desorption laser irradiance has the opposite effect. The enhancement suggests extensive gas-phase ion-molecule reactions after irradiation by the desorption laser has ceased.  相似文献   

6.
Serum transferrin precipitated with specific antisera was analyzed by matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI/TOF-MS) and electrospray ionization-mass spectrometry (ESI-MS). When analyzed by MALDI, transferrin showed signal peaks that clearly could be separated from ions of IgG present in the immunoprecipitate. By ESI-MS, when the immunoprecipitates were loaded through a microcapillary polymeric reversed-phase column connected to the electrospray ionization probe, the mass spectra of transferrin were observed with a high signal-to-noise ratio and good resolution. By MALDI/TOF-MS, the observed molecular weight of normal transferrin was ~ 1.2 ku smaller when analyzed in the reflectron mode than in the linear mode. The observed molecular weight of transferrin treated with sialidase was approximately the same in both modes. A comparison between the results obtained in both modes may help to estimate the number of sialic acids on the protein molecule. A transferrin isoform with a molecular weight of ~2.2 ku less than the normal species was identified in the serum of patients with a carbohydrate-deficient glycoprotein syndrome as well as in heavy alcohol consumers.  相似文献   

7.
Electrospray droplet impact (EDI)/secondary ion mass spectrometry (SIMS) is a new desorption/ionization technique for mass spectrometry in which highly charged water clusters produced from the atmospheric‐pressure electrospray are accelerated in vacuum by several kV and impact the sample deposited on the metal substrate. In this study, several industrial synthetic polymers, e.g. polystyrene (PS) and polyethylene glycol (PEG) were analyzed by EDI/SIMS mass spectrometry. For higher molecular weight analytes, e.g. PS4000 and PEG4600, EDI/SIMS mass spectra could be obtained when cationization salts are added. For the polymers of lower molecular weights, e.g. PEG300 and PEG600, they could be readily detected as protonated ions without the addition of cationization agents. Anionized PS was also observed in the negative ion mode of operation when acetic acid was added to the charged droplet. Compared to matrix‐assisted laser desorption/ionization (MALDI), ion signal distribution with lower background signals could be obtained particularly for the low‐molecular weight polymers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The need of cellular and sub‐cellular spatial resolution in laser desorption ionization (LDI)/matrix‐assisted LDI (MALDI) imaging mass spectrometry (IMS) necessitates micron and sub‐micron laser spot sizes at biologically relevant sensitivities, introducing significant challenges for MS technology. To this end, we have developed a transmission geometry vacuum ion source that allows the laser beam to irradiate the back side of the sample. This arrangement obviates the mechanical/ion optic complications in the source by completely separating the optical lens and ion optic structures. We have experimentally demonstrated the viability of transmission geometry MALDI MS for imaging biological tissues and cells with sub‐cellular spatial resolution. Furthermore, we demonstrate that in conjunction with new sample preparation protocols, the sensitivity of this instrument is sufficient to obtain molecular images at sub‐micron spatial resolution. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A novel method was developed to measure the initial velocity of ions generated by matrix-assisted laser desorption ionization (MALDI). It is shown both experimentally and theoretically that with a delayed extraction (DE) technique, the flight time of an ion changes linearly with extraction delay. The initial velocity of the ion, a consequence of the desorption process, can be determined from the slope of this linear curve. Systematic study of the initial velocity was undertaken regarding its dependence on the matrix substance, molecular weight of the analyte, ion polarity, and wavelength of irradiation. It was found that the most important factor was the matrix material. Sinapinic acid and α-cyano-4-hydroxycinnamic acid matrices ejected slower peptide and protein ions than 2,5-dihydroxybenzoic acid or 3-hydroxypicolinic acid: ~ 300 versus ~ 550 m/s. Matrix ions themselves exhibited a similar order of initial velocities, but these were 15–40% higher than those of insulin ions. The molecular weight of protein samples (between 5 and 25 ku) was found to have little effect on the initial velocity, but for peptides below 5 ku a gradual transition was noted toward the velocity of the matrix ions. Also decreasing velocity with increasing molecular mass was observed for DNA samples in the 4–14-ku range. In the negative ion mode slightly lower velocities were observed than in the positive ion mode. No difference was found between 337- and 266-nm irradiation. Values of the initial velocities were used to correct systematic errors in the internal calibration observed in mass spectra with delayed extraction. These velocity corrections decrease mass errors substantially in the linear mode, in particular for multicomponent mixtures.  相似文献   

10.
The combination of microscope mode matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) with protein identification methodology: the molecular scanner, was explored. The molecular scanner approach provides improvement of sensitivity of detection and identification of high-mass proteins in microscope mode IMS. The methodology was tested on protein distributions obtained after separation by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE). High-quality, high-spatial-resolution ion images were recorded on a TRIFT-II ion microscope after gold coating of the MALDI sample preparation on the poly(vinylidenedifluoride) capture membranes. The sensitivity of the combined method is estimated to be 5 pmol. The minimum amount of sample consumed, needed for identification, was estimated to be better than 100 fmol. Software tools were developed to analyze the spectral data and to generate broad mass range and single molecular component microscope mode ion images and single mass-to-charge ratio microprobe mode images.  相似文献   

11.
The mechanisms responsible for matrix-assisted laser desorption/ionization (MALDI) are far from being well understood, particularly where infrared laser irradiation is used to initiate the process. We measured the emission yields and kinetic energy distributions of positive ions emitted from 2,5-dihydroxybenzoic acid loaded with angiotensin II in a standard MALDI preparation during irradiation with an infrared free-electron laser tuned to 2.94 microm. As the laser intensity is scanned through the MALDI threshold, we see a marked change in the energy distributions of the matrix ion. Above threshold, the energy distributions of both analyte and matrix cations are constant over a broad range of laser intensities. This behavior does not appear to be consistent with any extant model of the MALDI mechanism.  相似文献   

12.
The study of low molecular weight compounds by matrix-assisted laser desorption/ionization (MALDI) is difficult because of the presence of ions originating from the matrix in the low-m/z range. In order to resolve these problems, new matrix-free approaches were developed based on laser desorption/ionization from the surface of various materials such as graphite and porous silicon. Our work involves the use of 'desorption ionization on porous silicon mass spectrometry' (DIOS-MS) in the negative ion mode to study fatty acid compounds. The potential of the DIOS-MS technique is shown and an insight into the ionization mechanism provided.  相似文献   

13.
The desorption/ionization behaviour of polycyclic aromatic hydrocarbons (PAHs) in matrix-assisted laser desorption/ionization (MALDI) and laser desorption (LD) mass spectrometry was studied by the solvent-free sample preparation method. As the understanding of the desorption/ionization mechanism in MALDI is normally hampered by the different ionization and desorption efficiencies of the analytes, this work was focused on the analyses of a homologous series of four hexabenzocoronenes (HBCs) possessing virtually the same ionization efficiency: HBC parent, hexamethyl-hexabenzocoronene (HBC-C1), hexapropyl-hexabenzocoronene (HBC-C3) and hexakis(dodecyl)-hexabenzocoronene (HBC-C12). The different signal intensities obtained in their mass spectra can be related to differences in their desorption efficiencies, which are attributed to the different strengths of the intermolecular interactions between unsubstituted and alkylated HBCs in the solid state. The influence of the aromatic structure of PAHs on their photoionization/desorption probability was investigated. As a model system, an equimolar mixture composed of HBC-C12 and hexakis(dodecyl)-hexaphenylbenzene (HPB-C12) was chosen. The aromatic structures of both molecules and thus their absorption coefficients at the laser wavelength differ substantially and have a huge influence on their photoionization efficiency. The combined effect of laser light absorption and intermolecular interactions on the desorption/ionization behaviour of giant PAHs was further studied by using an equimolar mixture composed of a larger PAH (C(222)H(42)) and its dendritic precursor (C(222)H(150)). This mixture shows the opposite behaviour to that of the former example, because the balance between desorption and ionization efficiency has changed significantly. The present investigation should be of interest for providing a better understanding of MALDI and LD spectra obtained from natural PAH-containing samples, such as heavy oils, asphaltenes or pitches, for which our artificial mixtures represent suitable model systems.  相似文献   

14.
The influence of the sample preparation parameters (the choice of the solvent and of the matrix:analyte ratio) was investigated and optimal conditions were established for MALDI mass spectrometry analysis of the pristine low molecular weight polyvinyl acetate (PVAc). It was demonstrated that comparison of polymer’s and solvent’s Hansen solubility parameters could be used as a guide when choosing the solvent for MALDI sample preparation. The highest intensity PVAc signals were obtained when ethyl acetate was used as a solvent along with the lowest matrix–analyte ratio (2,5-dihydroxybenzoic acid was used as a matrix in all experiments). The structure of the PVAc was established with high accuracy using the matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS) analysis. It was demonstrated that PVAc undergoes unimolecular decomposition by losing acetic acid molecules from its backbone under the conditions of FTMS measurements. Number and weight average molecular weights as well as polydispersity indices were determined with both MALDI-TOF and MALDI-FTMS methods. The sample preparation protocol developed was applied to the analysis of a chewing gum and the molecular weight and structure of the polyvinyl acetate present in the sample were established. Thus, it was shown that optimized MALDI mass spectrometry could be used successfully for characterization of polyvinyl acetate in commercially available chewing gum.  相似文献   

15.
To evaluate the applicability of EDI to material analysis as a new ionization method, a comparison of EDI with solvent-free matrix-assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI) was made for the analysis of organic pigments, e.g. Pigment Yellow 93, Pigment Yellow 180, and Pigment Green 36, as test samples, which are poorly soluble in standard solvents. In EDI, the samples were prepared in two ways: deposition of suspended samples in appropriate solvents and dried on the substrate, and the direct deposition of the powder samples on the substrate. No matrices were used. Both sample preparation methods gave similar mass spectra. Equally strong signals of [M + H](+) and [M - H](-) ions were observed with some fragment ions for azo pigments in the respective positive or negative mode of operation. For the powder sample of the phthalocyanine pigment PG36, M(+*) and [M + H](+) in the positive mode and M(-*) in the negative mode of operation were observed as major ions. Positive-mode, solvent-free MALDI gave M(+), [M + H](+) and [M + Na](+) and negative mode gave [M - H](-) depending on the sample preparation. As solvent-free MALDI, EDI was also found to be an easy-to-operate, versatile method for the samples as received.  相似文献   

16.
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (ToF) mass spectrometry (MS) is an established tool for analyzing high mass molecules, such as proteins, whereas it attracts far less interest in the field of lipid analysis. In the study reported here a new chlorosulfolipid (CSL), 3,8,12,15-tetrachloroeicosane-1,17,18-triyl tris(hydrogen sulfate), was identified from the alga Ochromonas danica and de novo characterized by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-ToF) MS in negative ion mode. This method provides an effective alternative for the analysis of compounds directly derived from organic cell extracts. For MALDI analyses several frequently used solid MALDI matrices as well as some ionic liquid matrices (ILMs) were tested to enhance the analyte response to UV-laser and its ionization. The molecular weight of the observed compound could be determined as Li-, Na- and K-adducts [M+Me-2H]-. The characteristic isotopic patterns of the measured ions and the well-allocated molecular fragments by MS1, MS2 and MS3 indicate the fourfold chlorination and threefold sulfation of the investigated compound. The MS fragmentation alongside of the chlorine-bearing C-atoms is accompanied by the generation of a double bond at the opposite fragment in MS1. This obtained fragmentation pattern provides an insight into the allocation of the chlorine-bearing C-atoms along the carbon chain.  相似文献   

17.
For matrix‐assisted laser desorption/ionization (MALDI) mass spectra, undesirable ion contamination can occur due to the direct laser excitation of substrate materials (i.e., laser desorption/ionization (LDI)) if the samples do not completely cover the substrate surfaces. In this study, comparison is made of LDI processes on substrates of indium and silver, which easily emit their own ions upon laser irradiation, and conventional materials, stainless steel and gold. A simultaneous decrease of ion intensities with the number of laser pulses is observed as a common feature. By the application of an indium substrate to the MALDI mass spectrometry of alkali salts and alkylammonium salts mixed with matrices, 2,5‐dihydroxybenzoic acid (DHB) or N‐(4‐methoxybenzylidene)‐4‐butylaniline (MBBA), the mixing of LDI processes can be detected by the presence of indium ions in the mass spectra. This method has also been found to be useful for investigating the intrinsic properties of the MALDI matrices: DHB samples show an increase in the abundance of fragment ions of matrix molecules and cesium ions with the number of laser pulses irradiating the same sample spot; MBBA samples reveal a decrease in the level of background noise with an increase in the thickness of the sample layer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In the interest of a more thorough understanding of the relationship between sample deposition technique and the quality of data obtained using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, details of the electrospray (ES) process of sample deposition are investigated using a number of techniques. Sample morphology was observed with scanning electron microscopy (SEM) and atomic force microscopy (AFM), while matrix-enhanced secondary ion mass spectrometry (MESIMS) monitored surface coverage. Electrospray deposition reduces the analyte segregation that can occur during traditional dried droplet deposition for MALDI. We attribute statistically significant improvements in the reproducibility of signal intensity and MALDI average molecular mass measurements to the ES sample deposition technique.  相似文献   

19.
Reduction of analytes in matrix-assisted laser desorption/ionization (MALDI) often obscures the actual determination of molecular structure. To address the redox reactions in laser desorption/ionization processes, the organic dyes Methylene Blue, Janus Green B, Crystal Violet and Rhodamine B were analyzed by MALDI or by desorption/ionization on porous silicon (DIOS). Susceptibility to reduction in MALDI was dependent on both the reduction potentials of analytes and the molar ratio of analyte to matrix molecules. Addition of Cu(II) ions as an electron scavenger suppressed the reduction of Methylene Blue in MALDI. The results suggested that electron transfer to analytes from the sample target and/or from the matrix contributed to the reduction. In DIOS, the reductions of organic dyes were more prominent than in MALDI, and were not prevented by Cu(II) ion doping, probably due to direct contact of the analytes with silicon which had little electric resistance.  相似文献   

20.
The mean initial velocities of analyte ions ranging in molecular weight from 1000 Da to 150 kDa and desorbed with a pulsed Er:YAG laser from various solid-state and liquid IR MALDI matrices were measured along with those of the matrix ions. Experiments with UV MALDI were performed for comparison in addition for a 2,5-dihydroxybenzoic acid preparation. Two different measurement principles were employed, (1) a delayed extraction method, relying on the initial velocity-dependent increase of flight times with delay time between laser and HV ion extraction pulse, and (2) a field-free drift method in which the first region of a two-stage ion source was varied in length and the flight times compared. The two methods yielded somewhat different values for the mean initial ion velocities. Based on a detailed discussion of the measurement principles it is suggested that the actual initial velocities of IR MALDI ions lie between the limits set by the two methods. The influences of the analyte-to-matrix ratio, laser fluence, and laser wavelength on the initial ion velocities were also investigated. Significant differences between the desorption mechanisms for liquid and solid-state matrices were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号