首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The effect of varying mobile phase composition across a ternary space between two binary compositions is examined, on four different reversed-phase stationary phases. Examined stationary phases included endcapped C8 and C18, as well as a phenyl phase and a C18 phase with an embedded polar group (EPG). Mobile phases consisting of 50% water and various fractions of methanol and acetonitrile were evaluated. Retention thermodynamics are assessed via use of the van’t Hoff relationship, and retention mechanism is characterized via LSER analysis, as mobile phase composition was varied from 50/50/0 water/methanol/acetonitrile to 50/0/50 water/methanol acetonitrile. As expected, as the fraction of acetonitrile increases in the mobile phase, retention decreases. In most cases, the driving force for this decrease in retention is a reduction of the enthalpic contribution to retention. The entropic contribution to retention actually increases with acetonitrile content, but not enough to overcome the reduction in the enthalpic contribution. In a similar fashion, as methanol is replaced with acetonitrile, the v, e, and a LSER system constants change to favor elution, while the s and c constants change to favor retention. The b system constant did not show a monotonic change with mobile phase composition. Overall changes in retention across the mobile phase composition range varied, based on the identity of the stationary phase and the composition of the mobile phase.  相似文献   

2.
The separation of C60 and C70 fullerenes on four different polysiloxane stationary phases was examined. It was determined that polar solvents can be used as mobile phases effectively for the separation of fullerene molecules. Unlike previously published work, a polymeric octadecyl siloxane (ODS) stationary phase provided higher separation factors for C70/C60 than did monomeric ODS stationary phases or phenyl substituted stationary phases. For example, for a methanol-diethyl ether (50:50, v/v) mobile phase and C60, k' approximately 5.0 separation factors, alpha = 3.3, were achieved with polymeric ODS compared to alpha = 2.2, with a monomeric ODS stationary phase. A linear solvation energy relationship (LSER) was used to model the importance of solvent interactions and stationary phase interaction to solute retention.  相似文献   

3.
Molecular simulations of water/acetonitrile and water/methanol mobile phases in contact with a C(18) stationary phase were carried out to examine the molecular-level effects of mobile phase composition on structure and retention in reversed-phase liquid chromatography. The simulations indicate that increases in the fraction of organic modifier increase the amount of solvent penetration into the stationary phase and that this intercalated solvent increases chain alignment. This effect is slightly more apparent for acetonitrile containing solvents. The retention mechanism of alkane solutes showed contributions from both partitioning and adsorption. Despite changes in chain structure and solvation, the molecular mechanism of retention for alkane solutes was not affected by solvent composition. The mechanism of retention for alcohol solutes was primarily adsorption at the interface between the mobile and stationary phase, but there were also contributions from interactions with surface silanols. The interaction between the solute and surface silanols become very important at high concentrations of acetonitrile.  相似文献   

4.
5.
A surface-confined ionic liquid (SCIL) and a commercial quaternary amine silica-based stationary phase were characterized employing the linear solvation energy relationship (LSER) method in binary methanol/water mobile phases. The retention properties of the stationary phases were evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phases. The comparison reveals a difference in the hydrophobic and hydrogen bond acceptance interaction properties between the two phases. The anion exchange retention mechanism of the SCIL phase was demonstrated using nucleotides. The utility of the SCIL phase in predicting logk IL/water values by chromatographic methods is also discussed.  相似文献   

6.
Two stationary phases attached to a silica hydride surface, cholesterol and bidentate C18, are investigated with a number of pharmaceutically related compounds in order to illustrate the various retention mechanisms that are possible for these bonded materials. The test solutes range from hydrophilic to hydrophobic based on log P (octanol/water partition coefficient) and pKa values. The mobile phases consist of acidified (formic and perchloric acid) water/methanol or water/ACN mixtures. Of particular interest are the high organic content mobile phase compositions where the retention would increase if the bonded material was operating in the aqueous normal phase (ANP) mode. Plots of retention factor (k) versus mobile phase composition are used to elucidate the retention mechanism. A number of examples are presented where solutes are retained based on RP, ANP, or dual retention mechanisms. The silica hydride-based stationary phases can also retain compounds in the organic normal phase.  相似文献   

7.
A new HPLC stationary phase based on n-butylimidazolium bromide has been characterized by a linear solvation energy relationship (LSER) approach in the binary acetonitrile/water mobile phases. The retention properties of the stationary phase were systematically evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phase. The results and further comparisons with conventional reversed phase system confirm that retention properties are similar to phenyl phases in acetonitrile/water mixtures. The results obtained with acetonitrile/water mixtures are also compared with results obtained using methanol/water mixtures.  相似文献   

8.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsiloxane-bonded silica stationary phase HyPURITY C18 with methanol-water and acetonitrile-water mobile phase compositions containing 10-70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (2), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent composition with a discontinuity at low organic solvent compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 solutes at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes not included in the models. The overwhelming number of residual values [log k (experimental) - log k (model predicted)] were negative and could be explained by contributions from steric repulsion, defined as the inability of the solute to insert itself fully into the stationary phase because of its bulkiness (i.e., volume and/or shape). Steric repulsion is shown to strongly depend on the mobile phase composition and was more significant for mobile phases with a low volume fraction of organic solvent in general and for mobile phases containing methanol rather than acetonitrile. For mobile phases containing less than about 20 % (v/v) organic solvent the mobile phase was unable to completely wet the stationary phase resulting in a significant change in the phase ratio and for acetonitrile (but less so methanol) changes in the solvation environment indicated by a discontinuity in the system maps.  相似文献   

9.
Varied types of alkylsiloxane-bonded and fluoroalkylsiloxane-bonded stationary phases, all commercially available, were investigated with subcritical fluid mobile phase. The effect of the alkyl chain length (from C4 to C18) and of the nature of the bonding (fluorodecylsiloxane, phenyl-C18 and polar-embedded-C18) on the chromatographic behaviour was investigated by the use of a linear solvation energy relationship (LSER), the solvation parameter model. A large set of test compounds provides precise and reliable information on the intermolecular interactions responsible for retention on these stationary phases used with a subcritical mobile phase. First of all, the results underline the close properties between subcritical fluid and organic liquid. The use of non aqueous mobile phases reduces the cavity energy and the mobile phase acidity generally encountered with aqueous liquid phases, allowing other interactions to take a part in retention. As expected, an increase in the alkyl chain length favours the dispersive interactions between the solutes and the stationary phases. Changes in basicity and acidity of the stationary phases are also related to the chain length, but, in this case, mobile phase adsorption onto the stationary phase is supposed to explain these behaviours. The addition of a phenyl group at the bottom of the C18 chain, near the silica, does not induce great modifications in the retentive properties. The fluorodecylsiloxane and the polar-embedded alkylsiloxane phases display very different properties, and can be complementary to the classical alkylsiloxane-bonded phases. In particular, the fluorinated phase does not favour the dispersive interactions, in comparison to hydrogenated stationary phases, when the basicity of the polar-embedded phase is obviously greater than the one of classical alkylsiloxane-bonded phases, due to the amide function. Finally, logk-logk curves plotted between the different phases illustrate the effect of the interaction properties on the retention of different classes of compounds.  相似文献   

10.
The retention of fifty structurally different compounds has been studied using linear solvation energy relationships. Investigations were performed with the use of six various stationary phases with two mobile phases (50/50?% v/v methanol/water and 50/50?% v/v acetonitrile/water). Packing materials were home-made and functionalized with octadecyl, alkylamide, cholesterol, alkyl-phosphate and phenyl molecules. This is the first attempt to compare all of these stationary phases synthesized on the same silica gel batch. Therefore, all of them may be compared in more complex and believable way, than it was performed earlier in former investigations. The phase properties (based on Abraham model) were used to the classification of stationary phases according to their interaction properties. The hydrophilic system properties s, a, b indicate stronger interactions between solute and mobile phase for most of the columns. Both e and v cause greater retention as a consequence of preferable interactions with stationary phase by electron pairs and cavity formation as well as hydrophobic bonds. However, alkyl-phosphate phase has different retention properties, as it was expressed by positive sign of s coefficient. It may be concluded that most important parameters influencing the retention of compounds are volume and hydrogen bond acceptor basicity. The LSER coefficients showed also the dependency on the type of organic modifier used as a mobile phase component.  相似文献   

11.
Studzi&#;ska  S.  Buszewski  B. 《Chromatographia》2012,75(21):1235-1246

The retention of fifty structurally different compounds has been studied using linear solvation energy relationships. Investigations were performed with the use of six various stationary phases with two mobile phases (50/50 % v/v methanol/water and 50/50 % v/v acetonitrile/water). Packing materials were home-made and functionalized with octadecyl, alkylamide, cholesterol, alkyl-phosphate and phenyl molecules. This is the first attempt to compare all of these stationary phases synthesized on the same silica gel batch. Therefore, all of them may be compared in more complex and believable way, than it was performed earlier in former investigations. The phase properties (based on Abraham model) were used to the classification of stationary phases according to their interaction properties. The hydrophilic system properties s, a, b indicate stronger interactions between solute and mobile phase for most of the columns. Both e and v cause greater retention as a consequence of preferable interactions with stationary phase by electron pairs and cavity formation as well as hydrophobic bonds. However, alkyl-phosphate phase has different retention properties, as it was expressed by positive sign of s coefficient. It may be concluded that most important parameters influencing the retention of compounds are volume and hydrogen bond acceptor basicity. The LSER coefficients showed also the dependency on the type of organic modifier used as a mobile phase component.

  相似文献   

12.
Small organic acids have shown significant retention on various stationary phases, such as amide, amino, aspartamide, silica and sulfobetaine phase commonly used in hydrophilic interaction chromatography (HILIC). This study investigated the effect of chromatographic conditions on the retention behavior of organic acids in HILIC using the tool of design of experiment (DOE). The results of the DOE study indicated that both the content of organic solvent (i.e., acetonitrile) and salt concentration in the mobile phase had significant effects on the retention of organic acids. Higher content of organic solvent in the mobile phase led to a significant increase in retention on all types of stationary phases. Increasing salt concentration also resulted in a moderate increase in retention; however, the effect of salt concentration varied with the type of stationary phase. The study also revealed that column temperature had less impact on retention than organic solvent content and salt concentration in HILIC.  相似文献   

13.
The chromatographic behavior of steroid hormones on four cholesterol‐bonded stationary phases with different structures in binary methanol/water mobile phases was studied. Of the stationary phases tested, the commercially available stationary phases Cogent UDC cholesterol? and COSMOSIL cholester? provided better separations of steroid hormones in comparison to homemade aminocholesterol and diaminocholesterol stationary phases. The results show that the temperature has a significant influence on the retention and selectivity for steroid hormones separation. The temperature increase may cause changes in the elution order. From the dependences of the retention (ln k) on temperature (1/T), the standard partial molar enthalpy and standard partial molar entropy were calculated and their enthalpic and entropic contributions to the retention were compared. The enthalpic effects principally control the retention mechanism.  相似文献   

14.
The solvation parameter model is used to elucidate the retention mechanism of neutral compounds on the pentafluorophenylpropylsiloxane-bonded silica stationary phase (Discovery HS F5) with methanol-water and acetonitrile-water mobile phases containing from 10 to 70% (v/v) organic solvent. The dominant factors that increase retention are solute size and electron lone pair interactions while polar interactions reduce retention. A comparison of the retention mechanism with an octadecylsiloxane-bonded silica stationary phase based on the same silica substrate and with a similar bonding density (Discovery HS C18) provides additional insights into selectivity differences for the two types of stationary phase. The methanol-water solvated pentafluorophenylpropylsiloxane-bonded silica stationary phase is more cohesive and/or has weaker dispersion interactions and is more dipolar/polarizable than the octadecylsiloxane-bonded silica stationary phase. Differences in hydrogen-bonding interactions contribute little to relative retention differences. For mobile phases containing more than 30% (v/v) acetonitrile selectivity differences for the pentafluorophenylpropylsiloxane-bonded and octadecylsiloxane-bonded silica stationary phases are no more than modest with differences in hydrogen-bond acidity of greater importance than observed for methanol-water. Below 30% (v/v) acetonitrile selectivity differences are more marked owing to incomplete wetting of the octadecylsiloxane-bonded silica stationary phase at low volume fractions of acetonitrile that are not apparent for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. Steric repulsion affects a wider range of compounds on the octadecylsiloxane-bonded than pentafluorophenylpropylsiloxane-bonded silica stationary phase with methanol mobile phases resulting in additional selectivity differences than predicted by the solvation parameter model. Electrostatic interactions with weak bases were unimportant for methanol-water mobile phase compositions in contrast to acetonitrile-water where ion-exchange behavior is enhanced, especially for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. The above results are compatible with a phenomenological interpretation of stationary phase conformations using the haystack, surface accessibility, and hydro-linked proton conduit models.  相似文献   

15.
The retention mechanism and chromatographic behavior for different polar analytes under hydrophilic interaction chromatography (HILIC) conditions have been studied by application of different mobile phases and stationary phases to various analytes at different temperatures. In addition to the commonly accepted mechanism of analyte liquid-liquid partitioning between mobile phase and water-enriched solvent layer which is partially immobilized onto the surface of the stationary phase, hydrogen-bonding, hydrophobic interaction, and ion-exchange interactions may also be involved. The predominant retention mechanism in HILIC separation is not always easily predictable. It can depend not only on the characteristics of the analytes but also on the selection of mobile and stationary phase compositions. The objective of this review is to evaluate the potential application of column temperature and mobile phase composition toward improving HILIC selectivity. The functional groups from analyte structures, stationary phase materials and organic mobile phase solvents will be highlighted.  相似文献   

16.
17.
The solvation parameter model is used to establish the contribution of cohesion, dipole-type and hydrogen-bonding interactions to the retention mechanism on an XTerra MS C18 stationary phase with acetonitrile-water, methanol-water and tetrahydrofuran-water mobile phases containing from 10 to 70% (v/v) organic solvent. Solute size and electron lone pair interactions are responsible for retention while dipole-type and hydrogen-bonding interactions result in lower retention. The volume fraction of water in the mobile phase plays a dominant role in the retention mechanism. However, the change in values of the system constants of the solvation parameter model cannot be explained entirely by assuming the principle role of the organic solvent is to act as a diluent for the mobile phase. Selective solvation of the stationary phase by the organic solvent and the ability of the organic solvent to extract water into the stationary phase, and/or the absorption of water-organic solvent complexes by the stationary phase, are important in accounting for the details revealed about the retention mechanism by the solvation parameter model. A qualitative picture of the above solvent effects, compatible with current knowledge of solvent and stationary phase properties, is presented.  相似文献   

18.
Utilizing linear solvation free energy relationship methodology, a novel pyridinium bromide surface confined ionic liquid (SCIL) stationary phase was characterized under normal phase high-performance liquid chromatographic conditions. A limited set of neutral aromatic probe solutes were utilized to rapidly assess the utility of the LSER model, using mobile phases of hexane modified with 2-propanol. The excellent correlation of the global fit across the mobile phase composition range used in this study for the experimental and calculated retention values (R(2)=0.994) indicates that the LSER model is an appropriate model of characterizing this polar bonded phase under normal phase conditions. For a limited subset of compounds, retention on the pyridinium bromide SCIL stationary phase is more highly correlated with that obtained on a cyano column than on a diol column under NP conditions.  相似文献   

19.
建立了以多糖衍生物为手性固定相的高效液相色谱-串联质谱(HPLC-MS/MS)直接拆分氰戊菊酯对映体的方法。在反相液相色谱条件下,考察了手性固定相的种类、流动相组成、柱温、流速对氰戊菊酯4个立体异构体分离的影响。同时,利用热力学方法对氰戊菊酯的立体异构体与固定相之间的色谱保留和分离的热力学机理进行了探讨。结果表明:采用Lux Cellulose-3(纤维素-三(4-甲基苯甲酸酯))手性色谱柱,在以流动相为乙腈-水(5 mmol/L甲酸铵)=(55:45,V:V)流速0.4 mL/min,柱温30℃的条件下,可在14 mins内实现氰戊菊酯4个立体异构体的基线分离。拓展了HPLC-MS/MS在菊酯类手性农药对映体分离及检测上的应用。  相似文献   

20.
Linear solvation energy relationships (LSERs) were used to delineate which specific intermolecular interactions are responsible for changes in retention for a variety of well characterized analytes when acidic and basic additives were used in reversed phase HPLC. The effects of trifluoroacetic acid, triethylamine and a combination of trifluoroacetic acid and triethylamine on the LSERs were compared to those observed in the absence of additives. These effects were examined using four different mobile phase modifiers and five different stationary phases. Trifluoroacetic acid alone and in combination with triethylamine produced LSER regression coefficients nearly identical to those obtained with no additive present in the mobile phase. Triethylamine alone produced different LSER regression coefficients from the other systems unless the mobile phase contained trifluoroethanol as the mobile phase modifier, or the stationary phase consisted of a polymeric support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号