首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In bicelle bacteriorhodopsin (bcbR) crystals, the protein has a different structure from both native bacteriorhodopsin (bR) and in-cubo bR (cbR) crystals. Recently, we studied the ability of bcbR crystals to undergo the photocycle upon laser excitation, characterized by the appearance of the M intermediate by single crystal resonance Raman spectroscopy. Calculation of the M lifetime by flash photolysis experiments demonstrated that in our bcbR crystals, the M rise time is much faster than in the native or cbR crystals, with a decay time that is much slower than these other two forms. Although it is now known that the bcbR crystals are capable of photochemical deprotonation, it is not known whether photochemical deprotonation is the only way to create the deprotonated Schiff base in the bcbR crystals. We measured both the visible and Raman spectra of crystals dried under ambient lighting and dried in the dark in order to determine whether the retinal Schiff base is able to thermally deprotonate in the dark. In addition, changes in the visible spectrum of single bcbR crystals under varying degrees of hydration and light exposure were examined to better understand the retinal binding environment.  相似文献   

2.
Abstract— The aim of the study is to clarify the mechanism of light adaptation of dark-adapted bacteriorhodopsin. Double-pulse experiment was carried out at room temperature in aqueous suspension of dark- and light-adapted fragments of the purple membranes for different excitation laser light intensities. It is demonstrated that the route of light adaptation of the dark-adapted bacteriorhodopsin depends on laser light intensity used.  相似文献   

3.
Abstract
In purple bacteriorhodopsin sheets adsorbed onto the phospholipid-impregnated collodion film, electrogenic stages are identified correlating with decays of the M and N(P)-type intermediates. It is concluded that both M N and N bR transitions are electrogenic.
The M decay is shown to be of a complex kinetics. In purple sheets, the lower the light intensity, the higher the rate of "slow M" decay. Such a dependence, which is absent from monomeric bacteriorhodopsin in proteoliposomes and from Triton X-100-solubilized protein, may be explained by the inhibiting effect of a light-induced conformation change in a bacteriorhodopsin molecule upon the M decay in some other bacteriorhodopsin molecules within the same sheet.
The light intensity-independent "slow M" decay in solubilized bacteriorhodopsin is shown to correlate with the decay of the N intermediate and H+ uptake after the flash. In contrast to "fast M", "slow M" is pH dependent, closely resembling in this respect the N intermediate. It is suggested that there is a fast light-independent equilibration between M and N so that "slow M" represents the portion of the M pool that monitors the N concentration. The M N equilibrium is assumed to be involved in the effect of the light-induced electric field on the M decay. No direct effect of light on the equilibrium was found.  相似文献   

4.
Abstract— In purple bacteriorhodopsin sheets adsorbed onto the phospholipid-impregnated collodion film, electrogenic stages are identified correlating with decays of the M and N(P)-type intermediates. It is concluded that both M → N and N → bR transitions are electrogenic.
The M decay is shown to be of a complex kinetics. In purple sheets, the lower the light intensity, the higher the rate of "slow M" decay. Such a dependence, which is absent from monomeric bacteriorhodopsin in proteoliposomes and from Triton X-100-solubilized protein, may be explained by the inhibiting effect of a light-induced conformation change in a bacteriorhodopsin molecule upon the M decay in some other bacteriorhodopsin molecules within the same sheet.
The light intensity-independent "slow M" decay in solubilized bacteriorhodopsin is shown to correlate with the decay of the N intermediate and H+ uptake after the flash. In contrast to "fast M", "slow M" is pH dependent, closely resembling in this respect the N intermediate. It is suggested that there is a fast light-independent equilibration between M and N so that "slow M" represents the portion of the M pool that monitors the N concentration. The M → N equilibrium is assumed to be involved in the effect of the light-induced electric field on the M decay. No direct effect of light on the equilibrium was found.  相似文献   

5.
The study of mutant D96N played an important role in understanding proton translocation by light driven bacteriorhodopsin. Our measurement of photoelectric current for single and double flash illumination revealed new details of the photocycle of this mutant. With double flash excitation we found an intermediate absorbing near the wavelength of the ground state of bacteriorhodopsin (bR) but pumping in the opposite direction. This intermediate has the same lifetime as the species described by Zimányi et al. [Proc. Natl. Acad. Sci. USA 96 (1999) 4414-4419] and was assigned to early recovery of a fraction of the ground state after excitation. Because the electric response does not reconcile with that of the ground state, we tentatively assign it to the L intermediate or to an intermediate similar in absorption to bR (bR').  相似文献   

6.
Protein electric response signals (PERS) of the M intermediates of wild‐type bacteriorhodopsin (bR) were recorded. Contrary to earlier findings reporting on a single‐phase response upon excitation of the M intermediates, a kinetic analysis of the signals revealed the existence of three components, the fastest and the slowest ones of negative, while the middle one of positive sign with respect to the normal direction of proton pumping. Based on proton motion indicator experiments and molecular dipole calculations, the components were assigned to proton transfer steps and conformational changes driving the bR molecule back from the M to the ground state upon blue light excitation. The fastest, negative pump component was assigned to the proton transfer from D85 to the Schiff base. The subsequent positive component was attributed to rearrangements in the protein core (in the vicinity of the retinal molecule), triggered by the primary proton transfer process. The slowest component was established to reflect charge rearrangements associated with proton uptake by the protein from the bulk.  相似文献   

7.
The flash photolysis kinetic spectra of the intermediate M(412) of bacteriorhodopsin were monitored during the process of acid titration. In the light-adapted state, the maximum peak amplitude of M(412) absorbance of bacteriorhodopsin decreased (pK(a)=3.40+/-0.05) as the pH decreased from 7.3 to 1.9. In the dark-adapted state, the maximum peak amplitude of M(412) absorbance of bacteriorhodopsin increased as the pH decreased from 6.9 to 4.1, and then decreased (pK(a)=2.85+/-0.05) as the pH dropped to 2.1. These different trends in the change in the maximum peak amplitude suggested that not only the transition of purple membrane to blue membrane had taken place in both light and dark-adapted states, but also the fraction of all-trans-bR had changed during the acid titration. The pH-dependent absorption changes at 640 nm of bacteriorhodopsin in both light- and dark-adapted states were also observed. The pK(a)-values of the purple-to-blue transition were 3.80+/-0.05 in light-adapted state and 3.40+/-0.05 in dark-adapted state, respectively. According to Balashov's method, the fraction of all-trans-bR was assayed as the pH decreased. All these results indicated that the purple-to-blue transition of light-adapted bacteriorhodopsin was accompanied by an all-trans to 13-cis retinal isomerization at acidic pH.  相似文献   

8.
ON THE TWO FORMS OF INTERMEDIATE M OF BACTERIORHODOPSIN   总被引:1,自引:0,他引:1  
Abstract— The decay time course of intermediate M of bacteriorhodopsin was investigated by flash spectrophotometry. The decay was composed of two exponentials showing the existence of two forms of intermediate absorbing around 410 nm. The two were very different in kinetic character whereas the absorption spectra were almost the same. The relative yield of the two components was a function of the intensity of the exciting flash and the slower component disappeared when the flash intensity was made very small. A model based on the trimeric cluster structure of bacteriorhodopsin is proposed.  相似文献   

9.
The back photoreaction of the M intermediate in the photocycle of bacteriorhodopsin is investigated both for the native pigment and its D96N mutant. The experimental setup is based on creating the M intermediate by a first pulse, followed by a (blue) laser pulse which drives the back photoreaction of M. Experiments are carried out varying the delay between the two pulses, as well as the temperature over the -25 degrees C-20 degrees C range. It is found that the kinetic patterns of the M back photoreaction change with time after the generation of this intermediate. The data provide independent evidence for the suggestion of a photocycle mechanism based on two distinct M intermediates. They are thus in keeping with the consecutive model of Varo and Lanyi (Biochemistry 30, 5016-5022; 1991), although they cannot exclude other models such as those based on branched or parallel cycles. More generally, we offer a "photochemical" approach to discriminating between intermediate stages in the photocycle which does not depend on spectroscopic and/or kinetic data. While markedly affecting the rate of the M --> N transition in the photocycle, the rate of the thermal step in back photoreaction of M, at both room and low temperatures, is not significantly affected by the D96N mutation. It is proposed that while Asp 96 is the Schiff-base protonating moiety in the M --> N transition, another residue (most probably Asp 85) reprotonates the Schiff base following light absorption by M.  相似文献   

10.
Abstract— The back photoreaction from the M(412nm) intermediate in the photocycle of light-adapted bacteriorhodopsin, BRLA(570 nm), is studied using pulsed laser excitation. The decay of a primarily produced species, MP, regenerates BRLA(570nm) in a process characterized by a half life of 200 ns at 25°C. The absorption maximum of MP is blue shifted (Λmax≃ 395 nm) relative to that of M(412nm). The primary photochemical step, M(412nm) → MP, is attributed to a conformational change in the polyene residue. The energy and entropy of activation of the subsequent MP→ BRLA (570 nm) relaxation are reported and discussed.  相似文献   

11.
Abstract— Photochemical and subsequent thermal reactions of pharaonis phoborhodopsin (ppR; absorption maximum, 498 nm) from Natronobacrerium pharaonis were investigated by nanosecond laser photolysis at 20°C. The experimental results clearly showed the presence of two intermediates in the photocycle of ppR besides the K, M and O intermediates detected previously. One was formed immediately after the excitation of ppR with a blue pulse (pulse width, 17 ns; wavelength, 460 nm), and the other was formed by the thermal reaction of this species. The new intermediates' absorption maxima were 512 and 488 nm, their extinction coefficients were 0.85- and 0.68-times smaller than that of ppR, and their lifetimes were 990 ns and 32 μs, respectively. The absorption and kinetic characteristics of these intermediates relative to ppR were similar to those of the KL and L intermediates of bacteriorhodopsin (bR). The formation of KL intermediates from both ppR and bR were observed only at room temperatures. On the other hand, the formation of L intermediate of bR was observed at both of room and low temperature, whereas that from ppR only at room temperature. The unique formation of L intermediate of ppR at room temperature is discussed in relation to high thermal stability of K intermediate of ppR.  相似文献   

12.
13.
Integralmembraneproteinsarecriticaltoawidevarietyofcellularpsychologicalactivities,suchascytochromeoxidaseinmediatingelectrontransportandtheactivationofintracellularsignalsbytransmembranereceptorscoupledtoGproteins[1].Inthesemembraneactivities,themechan…  相似文献   

14.
Recent evidence for involvement of internal water molecules in the mechanism of bacteriorhodopsin is reviewed. Water O-H stretching vibration bands in the Fourier transform IR difference spectra of the L, M and N intermediates of bacteriorhodopsin were analyzed by photoreactions at cryogenic temperatures. A broad vibrational band in L was shown to be due to formation of a structure of water molecules connecting the Schiff base to the Thr46-Asp96 region. This structure disappears in the M intermediate, suggesting that it is involved in transient stabilization of the L intermediate prior to proton transfer from the Schiff base to Asp85. The interaction of the Schiff base with a water molecule is restored in the N intermediate. We propose that water is a critical mobile component of bacteriorhodopsin, forming organized structures in the transient intermediates during the photocycle and, to a large extent, determining the chemical behavior of these transient states.  相似文献   

15.
Kinetics of the photo-induced processes of the transient states of the 3,4-didehydroretinal (3,4-dhr) modified bacteriorhodopsin (bR) was studied by a flash photolysis method in a water suspension at room temperature. The excitation initiated a photocycle with several transient intermediates similar to the trans photocycle of native bR. The main observation of the study was that although major part (80%) of the population of the M state relaxed via the O intermediate as in natural bR, 20% relaxed directly to the bR ground state in 200 ms.  相似文献   

16.
Light-driven transmembrane proton pumping by bacteriorhodopsin occurs in the photochemical cycle, which includes a number of spectroscopically identifiable intermediates. The development of methods to crystallize bacteriorhodopsin have allowed it to be studied with high-resolution X-ray diffraction, opening the possibility to advance substantially our knowledge of the structure and mechanism of this light-driven proton pump. A key step is to obtain the structures of the intermediate states formed during the photocycle of bacteriorhodopsin. One difficulty in these studies is how to trap selectively the intermediates at low temperatures and determine quantitatively their amounts in a photosteady state. In this paper we review the procedures for trapping the K, L, M and N intermediates of the bacteriorhodopsin photocycle and describe the difference absorption spectra accompanying the transformation of the all-trans-bacteriorhodopsin into each intermediate. This provides the means for quantitative analysis of the light-induced mixtures of different intermediates produced by illumination of the pigment at low temperatures.  相似文献   

17.
Wild-type bacteriorhodopsin (BR) and another retinal protein archaerhodopsin 4 (AR4) are both light-driven proton pumps, but exhibit opposite temporal orders of proton release and uptake upon a flash illumination at neutral pH due to a higher pK(a) of proton release complex (PRC) in AR4. Since the 77th residue in the extracellular side is proline (P) in BR, but aspartic acid (D) in AR4, we have mutated P77 in BR by D in this study. The new point mutation was found to affect the kinetics of proton release and the pH dependence significantly. Upon a flash excitation, three components "fast proton release,"proton uptake" and "slow proton release" were observed at neutral pH in P77D. The pK(a) of PRC in the M intermediate was increased from 5.6 in the wild-type to 7.0, and became closer to that in AR4, which is 8.4. The coupling strength between D85 and PRC were also weakened, as expected. These data indicate that the 77th residue in AR4 greatly account for the difference between the two proton pumps.  相似文献   

18.
Abstract
Arginine residues 82 and 227 in bacteriorhodopsin were replaced by glutamine residues, using the site-directed mutagenesis techniques. Mutant bacteriorhodopsins were found to be competent in formation and decomposition of the photocycle M412 intermediate as well as in generation of photoelectric potential provided that pH of the medium is sufficiently high. Lowering of pH results in transition of bacteriorhodopsin into a blue acidic form which cannot produce M412 and photo-potential. The p K values of these transitions for Arg-227 → Gln and Arg-82 → Gln mutants are shifted correspondently for 1 and 4 pH units to a higher pH region in comparison with native bacteriorhodopsin. The rate of the M412 formation in both mutants was similar to that in the native protein. As to M412 decay, it is much slower in Arg-227 → Gln mutant than in native and Arg-82 → Gln bacteriorhodopsins. In all cases, the decay depends only slightly upon pH. It is concluded that Arg-82 is involved in maintenance of a bacteriorhodopsin structure that is resistant to the pH decrease down to 4 whereas Arg-227 is required first of all for the process of Schiff base reprotonation.  相似文献   

19.
Abstract— Flash photolysis transients of bacteriorhodopsin were recorded with a spectrograph -multielement photodiode array combination and the recordings were analyzed to determine the concentrations of bacteriorhodopsin intermediates "M" and "O" relative to the amount of "bR" cycling (pH 7.1,10–40°C). Estimated concentration time courses were simulated with solutions to two kinetic decay models which could account for photocycle temperature dependence. A unidirectional unbranched decay model overpredicts our estimated levels of [O(r)], whereas a model branched at the "M" intermediate describes each of the later intermediate levels well (with no evidence for an independent "N" form). Our results are consistent with "M" decay regulating the level and rates of change of [bR (t)] and (bR(f)]- and also suggest that two temperature-dependent pathways form "bR" from "M", one directly, and the other indirectly through "O".  相似文献   

20.
Xue G  Yeung ES 《Electrophoresis》2002,23(10):1490-1498
Two computer-controlled galvanometer scanners are adapted for two-dimensional step scanning across a 96-capillary array for laser-induced fluorescence detection. 488 nm and 514 nm laser lines from the same Ar(+) laser were alternately coupled for two-color excitation in each capillary. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries and the excitation wavelengths. Based on the differences in absorption spectra for the dyes, the peak-height ratios in the 488 nm and 514 nm excitation electropherograms were used for peak identification for multiplexed capillary electrophoresis. Successful base calling for 24-capillary DNA sequencing was achieved to 450 bp with 99% accuracy. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components and flexibility due to the independent paths for excitation and emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号