首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A retrial queue accepting two types of positive customers and negative arrivals, mixed priorities, unreliable server and multiple vacations is considered. In case of blocking the first type customers can be queued whereas the second type customers leave the system and try their luck again after a random time period. When a first type customer arrives during the service of a second type customer, he either pushes the customer in service in orbit (preemptive) or he joins the queue waiting to be served (non-preemptive). Moreover negative arrivals eliminate the customer in service and cause server’s abnormal breakdown, while in addition normal breakdowns may also occur. In both cases the server is sent immediately for repair. When, upon a service or repair completion, the server finds no first type customers waiting in queue remains idle and activates a timer. If timer expires before an arrival of a positive customer the server departs for multiple vacations. For such a system the stability conditions and the system state probabilities are investigated both in a transient and in a steady state. A stochastic decomposition result is also presented. Interesting applications are also discussed. Numerical results are finally obtained and used to investigate system performance.  相似文献   

2.
A controlled single-server retrial queueing system is investigated. Customers arrive according to batch Markovian arrival process. The system has several operation modes which are controlled by means of a threshold strategy. The stationary distribution is calculated. Optimization problem is considered and a numerical example is presented.  相似文献   

3.
This paper considers a like-queue production system in which server vacations and breakdowns are possible. The decision-maker can turn a single server on at any arrival epoch or off at any service completion. We model the system by an M[x]/M/1 queueing system with N policy. The server can be turned off and takes a vacation with exponential random length whenever the system is empty. If the number of units waiting in the system at any vacation completion is less than N, the server will take another vacation. If the server returns from a vacation and finds at least N units in the system, he immediately starts to serve the waiting units. It is assumed that the server breaks down according to a Poisson process and the repair time has an exponential distribution. We derive the distribution of the system size through the probability generating function. We further study the steady-state behavior of the system size distribution at random (stationary) point of time as well as the queue size distribution at departure point of time. Other system characteristics are obtained by means of the grand process and the renewal process. Finally, the expected cost per unit time is considered to determine the optimal operating policy at a minimum cost. The sensitivity analysis is also presented through numerical experiments.  相似文献   

4.
We analyze an unreliable M/M/1 retrial queue with infinite-capacity orbit and normal queue. Retrial customers do not rejoin the normal queue but repeatedly attempt to access the server at i.i.d. intervals until it is found functioning and idle. We provide stability conditions as well as several stochastic decomposability results.  相似文献   

5.
In this paper, we study an M/G/1 multi-queueing system consisting ofM finite capacity queues, at which customers arrive according to independent Poisson processes. The customers require service times according to a queue-dependent general distribution. Each queue has a different priority. The queues are attended by a single server according to their priority and are served in a non-preemptive way. If there are no customers present, the server takes repeated vacations. The length of each vacation is a random variable with a general distribution function. We derive steady state formulas for the queue length distribution and the Laplace transform of the queueing time distribution for each queue.  相似文献   

6.
A. Aissani 《Queueing Systems》1994,17(3-4):431-449
Retrial queues are useful in the stochastic modelling of computer and telecommunication systems amongst others. In this paper we study a version of the retrial queue with variable service. Such a point of view gives another look at the unreliable retrial queueing problem which includes the redundancy model.By using the theory of piecewise Markovian processes, we obtain the analogue of the Pollaczek-Khintchine formula for such retrial queues, which is useful for operations researchers to obtain performance measures of interest.  相似文献   

7.
A queueing system with batch arrivals andn classes of customers with nonpreemptive priorities between them is considered. Each batch arrives according to the Poisson distribution and contains customers of all classes while the service times follow arbitrary distributions with different probability density functions for each class. For such a model the system states probabilities both in the transient and in the steady state are analysed and also expressions for the Laplace transforms of the busy period densities for each class and for the general busy period are obtained.  相似文献   

8.
This paper deals with the steady state behaviour of an Mx/G/1 queue with general retrial time and Bernoulli vacation schedule for an unreliable server, which consists of a breakdown period and delay period. Here we assume that customers arrive according to compound Poisson processes. While the server is working with primary customers, it may breakdown at any instant and server will be down for short interval of time. Further concept of the delay time is also introduced. The primary customer finding the server busy, down or vacation are queued in the orbit in accordance with FCFS (first come first served) retrial policy. After the completion of a service, the server either goes for a vacation of random length with probability p or may continue to serve for the next customer, if any with probability (1 − p). We carry out an extensive analysis of this model. Finally, we obtain some important performance measures and reliability indices of this model.  相似文献   

9.
We consider anM/M/1 retrial queueing system in which the retrial time has a general distribution and only the customer at the head of the queue is allowed to retry for service. We find a necessary and sufficient condition for ergodicity and, when this is satisfied, the generating function of the distribution of the number of customers in the queue and the Laplace transform of the waiting time distribution under steady-state conditions. The results agree with known results for special cases.Supported by KOSEF 90-08-00-02.  相似文献   

10.
An MMBP/Geo/1 queue with correlated positive and negative customer arrivals is studied. In the infinite-capacity queueing system, positive customers and negative customers are generated by a Bernoulli bursty source with two correlated geometrically distributed periods. I.e., positive and negative customers arrive to the system according to two different geometrical arrival processes. Under the late arrival scheme (LAS), two removal disciplines caused by negative customers are investigated in the paper. In individual removal scheme, a negative customer removes a positive customer in service if any, while in disaster model, a negative customer removes all positive customers in the system if any. The negative customer arrival has no effect on the system if it finds the system empty. We analyze the Markov chains underlying the queueing systems and evaluate the performance of two systems based on generating functions technique. Some explicit solutions of the system, such as the average buffer content and the stationary probabilities are obtained. Finally, the effect of several parameters on the system performance is shown numerically.  相似文献   

11.
In this paper we deal with a single server retrial queue with vacations. The server serves the customers until the system becomes empty, then it takes a vacation. The system consists of two types of costs. The blocking cost is considered whenever a customer is blocked either because of the server is busy or off. There is also a cost each time the server is turned on. The problem is to find an effective policy for turning on the dormant server. We propose a Fuzzy Based Threshold Policy (FBTP) to control the server, substitute for conventional threshold policies. The FBTP is based on four input parameters, an inference stage and it is tuned up using a stochastic List Based Threshold Accepting (LBTA) algorithm. Simulation models are developed to validate the fuzzy controller. Numerical experiments are provided to show that the proposed method is superior to crisp threshold policies.  相似文献   

12.
A queueing system with a single server providing two stages of service in succession is considered. Every customer receives service in the first stage and in the sequel he decides whether to proceed to the second phase of service or to depart and join a retrial box from where he repeats the demand for a special second stage service after a random amount of time and independently of the other customers in the retrial box. When the server becomes idle, he departs for a single vacation of an arbitrarily distributed length. The arrival process is assumed to be Poisson and all service times are arbitrarily distributed. For such a system the stability conditions and the system state probabilities are investigated both in a transient and in a steady state. A stochastic decomposition result is also presented. Numerical results are finally obtained and used to investigate system performance.  相似文献   

13.
We consider the M/M/c retrial queues with PH-retrial times. Approximation formulae for the distribution of the number of customers in service facility and the mean number of customers in orbit are presented. Some numerical results are presented.  相似文献   

14.
This paper presents the analysis of a discrete-time Geo/G/1Geo/G/1 queue with randomized vacations. Using the probability decomposition theory and renewal process, two variants on this model, namely the late arrival system with delayed access (LAS-DA) and early arrival system (EAS), have been examined. For both the cases, recursive solution for queue length distributions at arbitrary, just before a potential arrival, pre-arrival, immediately after potential departure, and outside observer’s observation epochs are obtained. Further, various performance measures such as potential blocking probability, turned-on period, turned-off period, vacation period, expected length of the turned-on circle period, average queue length and sojourn time, etc. have been presented. It is hoped that the results obtained in this paper may provide useful information to designers of telecommunication systems, practitioners, and others.  相似文献   

15.
We consider a multi-server retrial queue with waiting places in service area and four types of arrivals, positive customers, disasters and two types of negative customers, one for deleting customers in orbit and the other for deleting customers in service area. The four types of arrivals occur according to a Markovian arrival process with marked transitions (MMAP) which may induce the dependence among the arrival processes of the four types. We derive a necessary and sufficient condition for the system to be positive recurrent by comparing sample paths of auxiliary systems whose stability conditions can be obtained. We use a generalized truncated system that is obtained by modifying the retrial rates for an approximation of stationary queue length distribution and show the convergence of approximation to the original model. An algorithmic solution for the stationary queue length distribution and some numerical results are presented.   相似文献   

16.
Ioannis Dimitriou 《TOP》2013,21(3):542-571
In this paper we consider an unreliable single server retrial queue accepting two types of customers, with negative arrivals, preemptive resume priorities and vacations. A distinguishing feature of the model is that the rates of the Poisson arrival process depends on the server state. For this model we investigate the stability conditions and the joint queue length distribution in steady state. We also prove that our model satisfies the stochastic decomposition property. Transient, as well as steady state solutions for reliability measures are obtained. Finally, numerical results demonstrate the typical features of the model under consideration.  相似文献   

17.
A product form equilibrium distribution is derived for a class of queueing networks in either discrete or continuous time, in which multiple customers arrive simultaneously and batches of customers complete service simultaneously.  相似文献   

18.
推广的单重休假M~x/G/1排队系统   总被引:2,自引:0,他引:2  
研究了服务前需要重新调整机器的单重休假Mx/G/1排队系统,在LS变换和L变换下得到了服务员忙期中队长的瞬态分布和队长稳态分布的概率母函数.  相似文献   

19.
We consider a multi-server retrial queue with the Batch Markovian Arrival Process (BMAP). The servers are identical and independent of each other. The service time distribution of a customer by a server is of the phase (PH) type. If a group of primary calls meets idle servers the primary calls occupy the corresponding number of servers. If the number of idle servers is insufficient the rest of calls go to the orbit of unlimited size and repeat their attempts to get service after exponential amount of time independently of each other. Busy servers are subject to breakdowns and repairs. The common flow of breakdowns is the MAP. An event of this flow causes a failure of any busy server with equal probability. When a server fails the repair period starts immediately. This period has PH type distribution and does not depend on the repair time of other broken-down servers and the service time of customers occupying the working servers. A customer whose service was interrupted goes to the orbit with some probability and leaves the system with the supplementary probability. We derive the ergodicity condition and calculate the stationary distribution and the main performance characteristics of the system. Illustrative numerical examples are presented.  相似文献   

20.
This paper investigates a queueing system, which consists of Poisson input of customers, some of whom are lost to balking, and a single server working a shift of lengthL and providing a service whose duration can vary from customer to customer. If a service is in progress at the end of a shift, the server works overtime to complete the service. This process was motivated by the behavior of fishermen interviewed in the NY Great Lakes Creel Survey.We derive the distributions of the number of services (X), overtime and total server idle time (T), both unconditionally (for Poisson arrivals) and conditionally on the number (n) of arrivals per shift, assuming that the arrival times are not recorded in the data. These distributions provide the basis for estimation of the parameters from asingle realization of the queueing process during [0,L]. The conditional distributions also can be used to estimate common service time,w, when (n, X) or (n, T) are observed. Confidence intervals based onT are of shorter length, for all confidence coefficients, than the corresponding intervals based onX.This paper is Technical Report #BU-1019-M in the Biometrics Unit Series. The authors are grateful to N.U. Prabhu for suggestions on streamlining the distributional derivations and to D.R. Cox and C.E. McCulloch for helpful comments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号