首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of silica particles by the ammonia-catalyzed hydrolysis of tetraethyl orthosilicate (TEOS) in the polyoxyethylene (5) nonylphenyl ether (NP-5)/cyclohexane/water microemulsion system was investigated by time-resolved small-angle X-ray scattering (SAXS). The SAXS data could be modeled as a combination of two species where one describes the silica-particle containing microemulsion droplets and the other the reverse droplets. The analysis allowed the determination of the evolution of the system of particles of silica and reverse droplets. A model of nucleation and growth of the silica particles is confirmed and the volume fraction versus time data for the silica particles is in agreement with first order kinetics with respect to TEOS concentration. Moreover to describe the long time evolution of the system, a correlation among the silica particles has been taken into account by introducing a structure factor with a local silica volume fraction eta = 0.1. This high local density is 2 orders of magnitude larger than the global silica fraction and can be explained in terms of depleting interaction.  相似文献   

2.
Hamburg workshop on the "application of synchrotron radiation in chemistry"With grazing incidence small-angle X-ray scattering (GISAXS) the limitations of conventional small-angle X-ray scattering with respect to extremely small sample volumes in the thin-film geometry are overcome. GISAXS turned out to be a powerful advanced scattering technique for the investigation of nanostructured polymer films. Similar to atomic force microscopy (AFM), a large interval of length between molecular and mesoscopic scales is detectable with a surface-sensitive scattering method. While with AFM only surface topographies are accessible, with GISAXS the buried structure is also probed. Because a larger surface area is probed, GISAXS also has a much larger statistical significance compared to AFM. Due to the high demand on collimation, GISAXS experiments are based on synchrotron radiation. Nanostructures parallel and perpendicular to the sample surface observable in thin poly(styrene- block-isoprene) diblock copolymer films are presented as an example of the possibilities of GISAXS.  相似文献   

3.
The size evolution of platinum nanoparticles formed on a SiO2/Si(111) substrate as a function of the level of surface coverage with deposited clusters has been investigated. The anisotropic shapes of sub-nanometer-size nanoparticles are changed to isotropic on the amorphous substrate as their sizes increased. Using anomalous grazing incidence small-angle x-ray scattering (AGISAXS), the scattering from nanoparticles on the surface of a substrate is well separated from that of surface roughness and fluorescence. We show that AGISAXS is a very effective method to subtract the background and can provide unbiased information about particle sizes of less than 1 nm.  相似文献   

4.
A small-angle X-ray scattering (SAXS) study of two-stage latices (TSL), composed of polystyrene (PS) and polytribromostyrene (PTBrS), is presented. The analysis of the scattering curves leads to the conclusion that the TSL particles have a concentric core-shell structure. When a PTBrS latex was used as a seed, its particles were overcoated with a PS shell during the second-stage polymerization. However, only a small portion of the seed particles were overcoated with a PTBrS shell when using a PS seed. The size distributions of the TSL and the PTBrS latex particles were determined from the scattering curves, using the method of Indirect Fourier Transformation. The resulting average radii were in good agreement with the values obtained from TEM observations. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Pt/SiO2 catalysts have been studied by a small-angle X-ray scattering technique without commonly practiced packing of the carrier pores. The obtained Pt particle sizes are in good agreement with chemisorption and electron microscopy data.
Pt/SiO2 . Pt .
  相似文献   

6.
Reported here are the structural properties of a zinc 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine Langmuir monolayer on a water surface under progressive lateral compression investigated by grazing incidence X-ray scattering. Grazing incidence diffuse X-ray scattering out of the specular plane (GIXOS) is exploited to determine specular reflectivity-like information where the phase change of flat-lying molecules on the surface to edge-standing molecules perpendicular to the surface is directly observed. Furthermore, grazing incident X-ray diffraction (GIXD) is used to investigate the in-plane ordering of the system where it has been found that in the high-density state (approximately 0.35 nm2 per molecule) the system can be considered to be a monolayer consisting of arrays of side-by-side lying cofacially aggregated cylindrical rodlike entities.  相似文献   

7.
8.
The small-angle X-ray data from a polydisperse solution of sodium silicate have been measured in the concentration range 3.6–169 mg/cm3 using aKratky camera. The following values of the particle parameters were obtained: the average radius of gyration =7.5 nm, the average particle weight =900 000, the average volume =671 nm3, and the average particle surface area =717 nm2.From the above parameters and the apparent specific volume, analysed to be 0.422 cm3/g, the water content of the silicate particles was determined to be 3% (by weight).From small-angle X-ray measurements, performed on solutions exposed to a hydrodynamic field, it is indicated that at least the larger particles in the solution have a relatively symmetric shape. Based on this observation it was assumed that the particles in solution are spherical, and particle size distribution functions were calculated using a least-squares program. It was found that the distribution cannot be described by a simple function, such as aGaussian function; instead, the distribution follows a histogram with three local maxima.Dedicated to Prof. Dr. Dr.Otto Kratky, Graz, on the occasion of his 80th birthday.  相似文献   

9.
A unique type of inorganic-organic hybrid semiconductor bulk material is capable of emitting direct white light. Their photoluminescence properties can be tuned precisely and systematically by modifying structures and composition. They could be used as a single-material light-emitting source in high efficiency white-light-emitting diodes.  相似文献   

10.
Grazing-angle of incidence small-angle X-ray scattering (GISAXS) and high-resolution field emission scanning electron microscopy have been used to characterize the mesophase symmetry, orientation, and long-range order in PEO20-PPO70-PEO20 (Pluronic P123) templated mesoporous silica thin films on conducting gold substrates as a function of silica-to-ethylene oxide (Si/EO) block ratio and relative humidity (RH). The films are formed by dip-coating followed by evaporation-induced self-assembly under tightly controlled RH. The general evolution of the mesophase follows the trends that are expected based on shape factors due to swelling of the PEO block. However, changes in orientation of the nanostructure relative to the substrate and the degree of long-range order are found to depend on Si/EO ratio. These effects are likely due to the dynamics of evaporation and self-assembly. Generally, at Si/EO ratios lower than 3.29, the films contained regions where the nanostructure was not oriented relative to the plane of the substrate. However, for Si/EO ratios greater than 3.62, conditions were found where the nanostructure of the film was highly oriented relative to the plane of the substrate. This is true over the range of RH studied, independent of the nanostructure symmetry. For low Si/EO ratios at the highest RH levels, the films were composed of a mixture of spherical and cylindrical pores. At high Si/EO ratios and high RH levels, the films had a highly oriented R-3m nanostructure but displayed streaking perpendicular to the substrate in the Bragg spots on GISAXS patterns. This streaking is interpreted as faulting along planes parallel to the substrate.  相似文献   

11.
Isothermal melt crystallisation in high-density polyethylene (HDPE) was studied using the time-resolved SAXS method with synchrotron radiation over a wide range of crystallisation temperatures. The SAXS profile was analysed by an interface distribution function, g1(r), which is a superposition of three contributions associated with the size distributions of crystalline (LC) and amorphous (LA) layers and a distribution of long period (LP). The morphological parameters extracted from the g1(r) functions show that the lamellar thickness increases with time, obeying a logarithmic time dependence. The time evolution of LC observed for the sample crystallised at 122 °C leads to the conclusion that crystallisation proceeds according to the mechanism of thickening growth. For samples crystallised at lower temperatures (116 °C and 118 °C), the lamellar thickening mechanism has been observed. The rate of lamellar thickening in these cases is much lower than that at 122 °C. At 40 °C, thickening of the crystalline layer does not occur. The interface distribution functions were deconvoluted, and the relative standard deviation σC/LC obtained in this way is an additional parameter that is varied during crystallisation and can be used for analysis of this process. Time-dependent changes in the σC/LC at large supercooling (TC=40 °C) indicates that LC presents a broad distribution in which the relative standard deviation increases with time. At lower supercooling (TC=122 °C), LC shows a much sharper distribution. In this case, the relative standard deviation decreases with time.  相似文献   

12.
Nanometric bilayer-based self-assembled micelles commonly named as bicelles, formed with a mixture of long and short chains phosphatidylcholine lipids (PC), are known to orient spontaneously in a magnetic field. This field-induced orientational order strongly depends on the molecular structure of the phospholipids. Using small-angle X-ray scattering (SAXS), we performed detailed structural studies of bicelles and investigated the orientation/relaxation kinetics in three different systems: saturated-chain lipid bicelles made of DMPC (dimyristoyl PC)/DCPC (1,2-dicaproyl PC) with and without the added paramagnetic lanthanide ions Eu(3+), as well as bicelles of TBBPC (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC)/DCPC. The structural study confirmed the previous NMR studies, which showed that DMPC bicelles orient with the membrane normal perpendicular (defined here as "nematic" orientation) to the magnetic field, whereas they orient parallel (defined here as "smectic" orientation) to the magnetic field in the presence of Eu(3+). The TBBPC bicelles also show smectic orientation. Surprisingly, the orientational order induced in the magnetic field remains even after the magnetic field is removed, which allowed us to investigate the orientation and relaxation kinetics of different bicelle structures. We demonstrate that this kinetics is very different for all three types of bicelles at the same lipid concentration; DMPC bicelles (~40 nm diameter) with and without Eu(3+) orient faster than TBBPC bicelles (~80 nm diameter). However, for the relaxation, DMPC bicelles (nematic) lose their macroscopic orientation only after one hour, whereas both DMPC bicelles with Eu(3+) and TBBPC bicelles (smectic) remarkably stay oriented for up to several days! These results indicate that the orientation mechanism of these nanometric disks in the magnetic field is governed by their size, with smaller bicelles orienting faster than the larger bicelles. Their relaxation mechanism outside the magnetic field, however, is governed by the degree of ordering. Indeed, the angular distribution of oriented bicelles is much narrower for the bicelles with smectic orientation, and, consequently, they keep aligned for much longer time (days) than those with nematic ordering (hours) outside the magnetic field. The understanding of the orientation/relaxation kinetics, as well as the morphologies of these "molecular goniometers" at molecular and supramolecular levels, allows controlling such an unprecedented long-range and long-lived smectic ordering of nanodisks and opens a wide field of applications for structural biology or material sciences.  相似文献   

13.
Synchrotron small-angle X-ray scattering technique has been used to study the effect of ultrasound on the microstructure of polystyrene (PS) in cyclohexane solutions. The results show that the intramolecular radius of gyration (R g) decreases with ultrasound, indicating the shrinkage and collapse of PS chains. There is an exponential relationship between R g and the molecular weight of PS (M w), and the exponent changes from 0.5 to 0.417, as the ultrasound time is increased. This means that the shape of PS chain changes from random coil to shrunken form. The Kratky plots also confirm the shape transformation of PS chains induced by ultrasound. Moreover, the intermolecular correlation length increases with the ultrasound time, which is indicative of the entanglement of PS chains.  相似文献   

14.
We review recent structural investigations done by anomalous small-angle X-ray scattering (ASAXS). ASAXS uses the dependence of the scattering length of a given element if the energy of the incident X-ray beam is near the absorption edge of this element. The analysis of the ASAXS data leads to three partial intensities. We show that the comparison of these three partial intensities leads to valuable information in fluctuating systems. This has been demonstrated from data derived from recent molecular dynamics simulations of charged colloidal spheres. Moreover, it is shown that the three partial intensities can be obtained from experimental ASAXS data indeed. As an example for this analysis, we discuss recent ASAXS data referring to rod-like polyelectrolytes. These polyelectrolytes consist of a stiff poly(p-phenylene) backbone with attached charged groups that are balanced by bromine counterions. The three partial intensities can be determined experimentally and compared to the prediction of the Poisson–Boltzmann cell model. Quantitative agreement is found demonstrating the strong correlation of the counterions to the rod-like macroion. ASAXS is thus shown to furnish information not available by the conventional small-angle scattering experiment.  相似文献   

15.
The structure of lysozyme-sodium dodecyl sulfate (SDS) complexes in solution is studied using small-angle X-ray scattering (SAXS). The SAXS data cannot be explained by the necklace and bead model for unfolded polypeptide chain interspersed with surfactant micelles. For the protein and surfactant concentrations used in the study, there is only marginal growth of SDS micelles as they complex with the protein. Being a small and rather rigid protein, lysozyme can penetrate the micellar core which is occupied by flexible and disordered paraffin chains and also the shell occupied by the hydrated head groups. A partially embedded swollen micellar model seems appropriate and describes well the scattering data. The SAXS intensity profiles are analyzed by considering the change in the electron scattering length density of the micellar core and shell due to complexation with protein and treating the intermicellar interaction using rescaled mean spherical approximation (RMSA) for charged spheres.  相似文献   

16.
Gamma irradiated isotactic polypropylene (IPP) has been studied by means of wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). The skin layer has been investigated by WAXS reflection mode while the core layer underwent WAXS studies by transmission mode. β-IPP has been found solely in the skin layer. An increase in the β-phase has been observed as result of the irradiation. A phase transitions and decrease of crystallite sizes have been also observed. All of the parameters show a sharp change at a critical dose of 100 kGy. At this point the system parameters reverse. Radiation processes proceeding up to 100 kGy called radiation annealing are related to the improved crystallite perfection and thus emphasize the phase boundary. The processes provoke at higher radiation doses, up to 2000 kGy, damage in both crystal and amorphous lamellar parts. The values of the crystal and amorphous densities get closer and the process is similar to the partial radiation melting.  相似文献   

17.
The structure factors of colloidal silica dispersions at rather high volume fractions (from 0.055 to 0.22) were measured by small-angle X-ray scattering and fitted with both the equivalent hard-sphere potential model (EHS) and the Hayter-Penfold/Yukawa potential model (HPY). Both of these models described the interactions in these dispersions successfully, and the results were in reasonable agreement. The strength and range of the interaction potentials decreased with increasing particle volume fractions, which suggests shrinkage of the electrical double layer arising from an increase in the counterion concentration in the bulk solution. However, the interactions at the average interparticle separation increased as the volume fraction increased. The interaction ranges (delta) determined by the two models were very similar. Structure factors were also used to determine the size and volume fraction of the particles. The values of the size obtained from the structure factors were slightly larger than those obtained from the form factors; this difference is ascribed to the nonspherical shape and polydispersity of the colloidal particles. The volume fractions measured by these two methods were very similar and are both in good agreement with the independently measured results.  相似文献   

18.
Thin cadmium sulfide films were prepared on a monocrystalline-crystal silicon substrate by chemical deposition from aqueous solutions. Grazing incidence X-ray diffraction revealed that the cadmium sulfide films are comprised of nanocrystal particles, with 80% of the particles having a size of 5 ± 1 nm. Some nanocrystals have a wurtzite structure, while others, a sphalerite one. The presence of cubic phase in the films is indicative of a nonequilibrium state of the nanocrystalline films. Thirty minutes after the onset of the formation of cadmium sulfide, the size and crystal structure of the constituent particles of the film become independent of the deposition time—only the film thickness increases. In addition, the initial stage of the formation of the cadmium sulfide film is accompanied by the deposition of cadmium hydroxide Cd(OH)2.  相似文献   

19.
The morphology of cold-drawn, rolled and annealed high-density polyethylene was investigated by transmission electron microscopy of stained sections. From the electron micrographs, a model of the structure was developed and the scattering pattern calculated. This was then compared with the corresponding small-angle X-ray scattering (SAXS) pattern, in order both to aid in the interpretation of SAXS patterns of oriented polymers, and to assess the effects of staining with chlorosulphonic acid on the morphology.  相似文献   

20.
Synchrotron small-angle X-ray scattering (SAXS) was used to analyze the structure of self-assembled autoxidized phospholipids in a very dilute solution of hexane. In addition, it was used to build a self-consistent model of the aggregates, taking into account their inner heterogeneities and polydispersity. The scattering intensity from a dilute mixture of different types of noninteracting components of the phospholipid system was represented as a linear combination of partial intensities from the components weighted by their volume fractions. Applying this approach the final model of the system was described as a mixture of polydisperse reverse micelles and aggregates with spherical and cylindrical shapes. Spherical aggregates were represented as hollow spheres with inner radius 0.7 nm (occupied by water or hexane) and outer radius 1.5 nm. Geometrical parameters of the aggregates did not change much during the oxidation process, while the ratio of reverse micelles and aggregates in solution varied. The amount of the reverse micelles increased from very low to about 80%, whereas the content of other aggregates constantly reduced. The analysis performed in this study helps one to better understand the processes of phospholipid oxidation, which may occur in biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号