首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Turbo spectroscopic imaging (TSI) is a spin echo spectroscopic imaging technique in which two or more echoes are acquired per excitation to reduce the acquisition time. The application of TSI has primarily been limited to the detection of uncoupled spins because the signal from coupled spins is modulated as a function of echo time. In this work we demonstrate how the TSI sequence can be modified to observe spins like the C2 protons of Glx (≈3.75 ppm) which are involved solely in weak-coupling interactions. The technique exploits the chemical shift displacement effect by employing TSI refocusing pulses that have bandwidths which are less than the chemical shift difference between the target spins and the spins to which they are weakly coupled. The modified TSI sequence rewinds the J-evolution of the target protons in the slice of interest independently of the echo time or echo spacing, thereby removing any signal variation between successive echoes (apart from T2 relaxation effects). In this study we tailored the narrow-bandwidth TSI sequence for observation of the C2 Glx protons. The echo time was experimentally optimized to minimize signal contamination from myo-inositol, and the efficacy of the method was verified on phantom solutions of Glx and on brain in vivo.  相似文献   

2.
Scanning time efficient slinky for non-contrast MRA at low field.   总被引:3,自引:0,他引:3  
To eliminate slab boundary artifact (SBA) for non-contrast multi-slab three-dimensional time-of-flight magnetic resonance angiogram (3D TOF MRA), we have previously developed a novel technique, termed SLINKY (Sliding Interleaved kY) acquisition in which a thin slab continuously "walks" along the z-axis while data are acquired in an interleaved fashion along the kY-axis. It has been demonstrated in our earlier works that SLINKY can suppress the SBA without any assumption of blood flow behavior, such as velocity or direction. At the same time, SLINKY keeps the same SNR as conventional multiple overlapping thin slab acquisition (MOTSA). Yet, this method is sensitive to any phase error along the ky axis. In our earlier application of SLINKY, we used navigator echoes to measure and correct the phase errors along the kY axis. The cost of using navigator echo collection is an increase in the imaging time. We therefore propose an improved SLINKY technique which does not use navigator echo collection for correcting phase errors, reducing the imaging time while keeping the same suppression of slab boundary artifacts. The present study demonstrates that by using a specifically designed RF pulse, the navigator echo collection can be avoided without incurring any extra ghosting or SNR reduction in the reconstructed images.  相似文献   

3.
李明磊  吴谨  白涛  万磊  李丹阳 《中国光学》2019,12(1):130-137
为了探索大随机相位误差条件下合成孔径雷达(SAL)成像特点和规律,本文采用波长为1 550 nm的线性调频激光器建立了能够产生大的共模随机相位误差的条带模式SAL成像实验装置。利用此装置获得了不同目标回波强度下条带模式SAL成像实验数据,结合条带模式相位梯度自聚焦(PGA)多次迭代处理,获得了高分辨率SAL图像。实验发现在[-6. 45π,6. 45π]范围的大随机相位误差下,通过简单的距离压缩和方位匹配滤波,无法实现SAL图像聚焦,图像信噪比仅为3 dB。进一步采用PGA处理,就能很好地校正相位误差,得到聚焦良好的SAL图像,图像信噪比达到43 dB。实验还发现,当存在大共模随机相位误差时,PGA处理展现出非常强的鲁棒性,在回波弱到10-15W的情况下依然有效。在大相位误差存在的SAL系统(如机载SAL)中,PGA处理能有效消除相位误差,实现图像聚焦;另外,增大探测激光功率以提高成像数据信噪比,将有助于提升PGA处理效果。  相似文献   

4.
Indirect echoes (such as stimulated echoes) are a source of signal contamination in multi-echo spin-echo T2 quantification and can lead to T2 overestimation if a conventional exponential T2 decay model is assumed. Recently, nonlinear least square fitting of a slice-resolved extended phase graph (SEPG) signal model has been shown to provide accurate T2 estimates with indirect echo compensation. However, the iterative nonlinear least square fitting is computationally expensive and the T2 map generation time is long. In this work, we present a pattern recognition T2 mapping technique based on the SEPG model that can be performed with a single pre-computed dictionary for any arbitrary echo spacing. Almost identical T2 and B1 maps were obtained from in vivo data using the proposed technique compared to conventional iterative nonlinear least square fitting, while the computation time was reduced by more than 14-fold.  相似文献   

5.
The purpose of this study was to evaluate the alterations of diluted molarity of contrast media to emit the maximum signal intensity by changing the parameters of pulse sequences. The phantom was developed by diluting the magnetic resonance imaging (MRI) T1 contrast medium. The phantom images were obtained by 1.5 and 3.0 T MRI systems. We conducted Pearson’s analysis to reveal the correlation of the signal-to-noise ratio (SNR)90%, the change of the concentration range of the contrast media which shows over 90% SNR, with changing the parameters of T1 effect pulse sequences in both 1.5 and 3.0 T imaging. As the flip angle increased, the SNR increased for all contrast media in magnetization-prepared rapid gradient echo and two-dimensional fast low angle shot pulse sequences at 1.5 and 3.0 T. Although the SNR increased until 30°, the SNR was almost the same over 30° in volumetric interpolated breath-hold examination at 1.5 and 3.0 T. The minimum contrast molarity of the representing SNR90% was decreased according to the increasing time to repeat in spin echo. The present study revealed that the high concentration technique of contrast media on three pulse sequences (VIBE, MPRAGE, and 2D FLASH) could be useful to obtain images with better SNR.  相似文献   

6.
Nan Xu  Liren Liu  Wei Lu 《Optik》2011,122(3):211-214
The nonlinear chirp of a tunable laser generates the phase errors and damages the range resolution in synthetic aperture imaging ladar (SAIL). In the compensation algorithms establishing matched and nonmatched reference paths, the phase errors were compensated in a whole echo pulse. In this paper a compensation algorithm of nonlinear chirp by scan filtering is proposed.The heterodyne signals of different echoes from all target points in a footprint are scan filtered from one whole heterodyne signal of one whole echo pulse in the spectrum. The phase errors of these heterodyne signals are measured by phase-shifting algorithm in reference path and compensated separately. Then all the compensated signals are combined back into a whole heterodyne pulse and compressed in range. After all heterodyne pulses are compressed in range, the azimuth compensation is followed.The mathematical flow of this compensation algorithm is established. The simulation of the airborne SAIL model validates the feasibility, and the bandwidth of range compression decreases obviously. The effects of nonlinear chirp and the pass bandwidth of the scan filter are analyzed and discussed finally.  相似文献   

7.

Purpose

The goal of this work was to develop a fast 3D chemical shift imaging technique for the noninvasive measurement of hyperpolarized 13C-labeled substrates and metabolic products at low concentration.

Materials and Methods

Multiple echo 3D balanced steady state magnetic resonance imaging (ME-3DbSSFP) was performed in vitro on a syringe containing hyperpolarized [1,3,3-2H3; 1-13C]2-hydroxyethylpropionate (HEP) adjacent to a 13C-enriched acetate phantom, and in vivo on a rat before and after intravenous injection of hyperpolarized HEP at 1.5 T. Chemical shift images of the hyperpolarized HEP were derived from the multiple echo data by Fourier transformation along the echoes on a voxel by voxel basis for each slice of the 3D data set.

Results

ME-3DbSSFP imaging was able to provide chemical shift images of hyperpolarized HEP in vitro, and in a rat with isotropic 7-mm spatial resolution, 93 Hz spectral resolution and 16-s temporal resolution for a period greater than 45 s.

Conclusion

Multiple echo 3D bSSFP imaging can provide chemical shift images of hyperpolarized 13C-labeled compounds in vivo with relatively high spatial resolution and moderate spectral resolution. The increased signal-to-noise ratio of this 3D technique will enable the detection of hyperpolarized 13C-labeled metabolites at lower concentrations as compared to a 2D technique.  相似文献   

8.
Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement.In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90° excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T2 attenuation of the echo train yields an image convolution which causes blurring. The T2 blur effect is moderate for porous media with T2 lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media.In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T2 distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T2 weighted image may be acquired from each echo. The echo time (TE) of each T2 weighted image may be reduced to 500 μs or less. These profiles can be fit to extract a T2 distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the spatially resolved T2 distribution. These 1D images do not suffer from a T2 related blurring.The above SE-SPI measurements are combined to generate 1D images of the local saturation and T2 distribution as a function of saturation, upon centrifugation of petroleum reservoir core samples. The logarithm mean T2 is observed to shift linearly with water saturation. This new reservoir core analysis measurement may provide a valuable calibration of the Coates equation for irreducible water saturation, which has been widely implemented in NMR well logging measurements.  相似文献   

9.
A new echo type with free electrons in a slight inhomogeneous magnetic field excited by one electric and one magnetic pulse is calculated. Thus features of cyclotron echos and spin echoes are combined. The first electric pulse accelerates all (cold) particles to the same velocity as in the case of usual cyclotron echoes. The second magnetic pulse (at t = τ) rotates the plane of precession in phase space, quite in analogy to the motion of magnetic moments in the case of spin echoes. The echo arises at t = 2τ. The E-H echoes make relaxation and diffusion measurements in plasmas possible, using the methods proved useful in spin echo technique. There are no complications as in the case of E-E cyclotron echoes which are based on the fact that a velocity-dependent collision frequency is necessary for the nonlinearity of that echo mechanism.  相似文献   

10.
Rapid MR imaging techniques either deposit high amounts of radio frequency power or require powerful gradient systems with high slew rates, which might not be available on conventional scanners. QUEST provides a fast imaging method with scan times of the order of hundreds of milliseconds and avoids these problems at the cost of low signal-to-noise ratios (SNR). In this work, QUEST was optimized with regard to image quality and measuring time. With the use of a Hybrid QUEST technique, that refocuses the image echoes several times, a spatial resolution of 1.9 mm x 1.6 mm x 5 mm was achieved. By acquiring both the necessary correction data and the image information in a single echo train, the Hybrid QUEST technique was implemented as a true single-shot measurement with a total scan time of 190 ms. Optimization of the excitation flip angles and the amplitude and phase correction methods for image reconstruction resulted in an improved SNR of 53.7 in the white matter of the human head for a 10 mm slice thickness at 1.5 T. In contrast to echo planar imaging techniques, no image distortions were observed with Hybrid QUEST in anatomic regions with many tissue interfaces.  相似文献   

11.
Echo planar imaging (EPI) is an ultrafast magnetic resonance imaging (MRI) technique that allows one to acquire a 2D image in about 100 ms. Unfortunately, the standard EPI images suffer from substantial geometric distortions, mainly originating from susceptibility differences in adjacent tissues. To reduce EPI distortions, correction methods based on a field map, which is a map of the off-resonance frequencies, have been developed. In this work, a nonlinear least squares estimator is used to optimize the estimation of the field map of the B0 field. The model of the EPI and reference data includes parameters for the phase evolution, the complex magnitude, the relaxation of the MRI signal and the EPI-specific phase difference between odd and even echoes, and from these parameters, additional corrections might be computed. The reference data required to estimate the field map can be acquired with a modified EPI-sequence. The proposed method is tested on simulated as well as experimental data and proves to be significantly more robust against noise, compared to the previously suggested method.  相似文献   

12.
PurposeHigh resolution multi-gradient echo (MGE) scanning is typically used for detection of molecularly targeted iron oxide particles. The images of individual echoes are often combined to generate a composite image with improved SNR from the early echoes and boosted contrast from later echoes. In 3D implementations prolonged scanning at high gradient duty cycles induces a B0 shift that predominantly affects image alignment in the slow phase encoding dimension of 3D MGE images. The effect corrupts the composite echo image and limits the image resolution that is realised. A real-time adaptive B0 stabilisation during respiration gated 3D MGE scanning is shown to reduce image misalignment and improve detection of molecularly targeted iron oxide particles in composite images of the mouse brain.MethodsAn optional B0 measurement block consisting of a 16 μs hard pulse with FA 1°, an acquisition delay of 3.2 ms, followed by gradient spoiling in all three axes was added to a respiration gated 3D MGE scan. During the acquisition delay of each B0 measurement block the NMR signal was routed to a custom built B0 stabilisation unit which mixed the signal to an audio frequency nominally centred around 1000 Hz to enable an Arduino based single channel receiver to measure frequency shifts. The frequency shift was used to effect correction to the main magnetic field via the B0 coil. The efficacy of B0 stabilisation and respiration gating was validated in vivo and used to improve detection of molecularly targeted microparticles of iron oxide (MPIO) in a mouse model of acute neuroinflammation.ResultsWithout B0 stabilisation 3D MGE image data exhibit varying mixtures of translation, scaling and blurring, which compromise the fidelity of the composite image. The real-time adaptive B0 stabilisation minimises corruption of the composite image as the images from the different echoes are properly aligned. The improved detection of molecularly targeted MPIO easily compensates for the scan time penalty of 14% incurred by the B0 stabilisation method employed. Respiration gating of the B0 measurement and the MRI scan was required to preserve high resolution detail, especially towards the back of the brain.ConclusionsHigh resolution imaging for the detection of molecularly targeted iron oxide particles in the mouse brain requires good stabilisation of the main B0 field, and can benefit from a respiration gated image acquisition strategy.  相似文献   

13.
A fast spin echo two-point Dixon (fast 2PD) technique was developed for efficient T2-weighted imaging with uniform water and fat separation. The technique acquires two interleaved fast spin echo images with water and fat in-phase and 180° out-of-phase, respectively, and generates automatically separate water and fat images for each slice. The image reconstruction algorithm uses an improved and robust region-growing scheme for phase correction and achieves consistency in water and fat identification between different slices by exploiting the intrinsic correlation between the complex images from two neighboring slices. To further lower the acquisition time to that of a regular fast spin echo acquisition with a single signal average, we combined the fast 2PD technique with sensitivity encoding (SENSE). Phantom experiments show that the fast 2PD and SENSE are complementary in scan efficiency and signal-to-noise ratio (SNR). In vivo data from scanning of clinical patients demonstrate that T2-weighted imaging with uniform and consistent fat separation, including breath-hold abdominal examinations, can be readily performed with the fast 2PD technique or its combination with SENSE.  相似文献   

14.
In this paper, we aimed to investigate the feasibility of direct visualization of myelin, including myelin lipid and myelin basic protein (MBP), using two-dimensional ultrashort echo time (2D UTE) sequences and utilize phase information as a contrast mechanism in phantoms and in volunteers. The standard UTE sequence was used to detect both myelin and long T2 signal. An adiabatic inversion recovery UTE (IR-UTE) sequence was used to selectively detect myelin by suppressing signal from long T2 water protons. Magnitude and phase imaging and T2* were investigated on myelin lipid and MBP in the forms of lyophilized powders as well as paste-like phantoms with the powder mixed with D2O, and rubber phantoms as well as healthy volunteers. Contrast to noise ratio (CNR) between white and gray matter was measured. Both magnitude and phase images were generated for myelin and rubber phantoms as well white matter in vivo using the IR-UTE sequence. T2* values of ~ 300 μs were comparable for myelin paste phantoms and the short T2* component in white matter of the brain in vivo. Mean CNR between white and gray matter in IR-UTE imaging was increased from − 7.3 for the magnitude images to 57.4 for the phase images. The preliminary results suggest that the IR-UTE sequence allows simultaneous magnitude and phase imaging of myelin in vitro and in vivo.  相似文献   

15.
The multiple-modulation-multiple-echo sequence, previously used for rapid measurement of diffusion, is extended to a method for single shot imaging. Removing the gradient switching requirement during the application of RF pulses by a constant frequency encoding gradient can shorten experiment time for ultrafast imaging. However, having the gradient on during the pulses gives rise to echo shape variations from off-resonance effects, which make the image reconstruction difficult. In this paper, we propose a simple method to deconvolve the echo shape variation from the true one-dimensional image. This method is extended to two-dimensional imaging by adding phase encoding gradients between echoes during the acquisition period to phase encode each echo separately. Slice selection is achieved by a frequency selective pulse at the beginning of the sequence. Imaging speed is mainly limited by the phase encoding gradients' switching times and echo overlap when echo spacing is very short. This technique can produce a single-shot image of sub-millimeter resolution in 5 ms.  相似文献   

16.
Magnetic resonance imaging has rarely been applied to rigid polymeric materials, due primarily to the strong dipolar coupling and short signal lifetimes inherent in these materials. SPRITE (single point ramped imaging withT 1 enhancement) (B. J. Balcom, R. P. MacGregor, S. D. Beyea, D. P. Green, R. L. Armstrong, T. W. Bremner: J. Magn. Reson. A123, 131–134, 1996) is particularly well suited to imaging solid materials. With SPRITE, the only requirement is thatT 2* be long enough so that the signal can be phase-encoded. The minimum phase encoding time is limited by the maximum gradient strength available and by the instrument deadtime. At present this is usually tens of microseconds and will only improve with refinements in technology. We have used the SPRITE sequence in conjunction with raising the sample temperature to obtain images of rigid polymers that have largely frustrated conventional imaging methods. This approach provides a straightforward and reliable method for imaging a class of samples that, up until now, have been very difficult to image.  相似文献   

17.

Purpose

To improve signal-noise-ratio of in vivo mouse spinal cord diffusion tensor imaging using-phase aligned multiple spin-echo technique.

Material and methods

In vivo mouse spinal cord diffusion tensor imaging maps generated by multiple spin-echo and conventional spin-echo diffusion weighting were examined to demonstrate the efficacy of multiple spin-echo diffusion sequence to improve image quality and throughput. Effects of signal averaging using complex, magnitude and phased images from multiple spin-echo diffusion weighting were also assessed. Bayesian probability theory was used to generate phased images by moving the coherent signals to the real channel to eliminate the effect of phase variation between echoes while preserving the Gaussian noise distribution. Signal averaging of phased multiple spin-echo images potentially solves both the phase incoherence problem and the bias of the elevated Rician noise distribution in magnitude image. The proposed signal averaging with Bayesian phase-aligned multiple spin-echo images approach was compared to the conventional spin-echo data acquired with doubling the scan time. The diffusion tensor imaging parameters were compared in the mouse contusion spinal cord injury. Significance level (p-value) and effect size (Cohen’s d) were reported between the control and contused spinal cord to inspect the sensitivity of each approach in detecting white matter pathology.

Results

Compared to the spin-echo image, the signal-noise-ratio increased to 1.84-fold using the phased image averaging and to 1.30-fold using magnitude image averaging in the spinal cord white matter. Multiple spin-echo phased image averaging showed improved image quality of the mouse spinal cord among the tested methods. Diffusion tensor imaging metrics obtained from multiple spin-echo phased images using three echoes and two averages closely agreed with those derived by spin-echo magnitude data with four averages (two times more in acquisition time). The phased image averaging correctly reflected pathological features in contusion spinal cord injury.

Conclusion

Our in vivo imaging results indicate that averaging the phased multiple spin-echo images yields an 84% signal-noise-ratio increase over the spin-echo images and a 41% gain over the magnitude averaged multiple spin-echo images with equal acquisition time. Current results from the animal model of spinal cord injury suggest that the phased multiple spin-echo images could be used to improve signal-noise-ratio.  相似文献   

18.
Development of a novel photothermoacoustic (PTA) imaging technique utilizing a frequency-modulated (chirped) optical excitation and Fourier-domain methodology for depth-selective imaging of tissue chromophores is presented. Use of frequency-domain signal detection rather than short-pulse time-resolved measurements of pressure transients give an advantage of higher SNR typical to coherent detection techniques. Additionally, we introduce chirped optical excitation to generate linear frequency modulated PTA response which enables unambiguous and precise depth measurements of tissue chromophores. In order to obtain depth profilometric information from the frequency-domain PTA (FD-PTA) measurements, we describe implementation of two signal processing algorithms: matched filter compression and heterodyne mixing with coherent detection. We show that direct relationship between chromophore depth and spectrum of photothermo acoustic signals can be established to enable depth-selective tissue imaging. Application of amplitude and phase FD-PTA imaging is demonstrated in experiments with light-scattering phantoms and chicken breast tissues containing subsurface inclusions. The potential of the FD-PTA method for noninvasive tissue tomography and molecular imaging is discussed.  相似文献   

19.
Traditionally, Fourier spectroscopic imaging is associated with a small k-space coverage which leads to truncation artifacts such as "bleeding" and ringing in the resultant image. Because substantial truncation artifacts mainly arise from regions having intense signals, such as the subcutaneous lipid in the head, effective reduction of truncation artifacts can be achieved by obtaining an extended k-space coverage for these regions. In this paper, a hybrid technique which employs phase-encoded spectroscopic imaging (SI) to cover the central portion of the k-space and echo-planar spectroscopic imaging (EPSI) to measure the peripheral portion of the k-space is developed. EPSI, despite its inherently low SNR characteristics, provides a sufficient SNR for outer high-spatial frequency components of the aforementioned high signal regions and supplies an extended k-space coverage of these regions for the reduction of truncation artifacts. The data processing includes steps designed to remove inconsistency between the two types of data and a previously described technique for selectively retaining only outer k-space information for the high signal regions during the reconstruction. Experimental studies, in both phantoms and normal volunteers, demonstrate that the hybrid technique provides significant reduction in truncation artifacts.  相似文献   

20.
A parametric multiecho variant of proton spectroscopic imaging (SI) is presented using a multiecho SI sequence with uniform phase-encoding of all echoes within each echo train. The acquisition of SI data sets at different echo times (TE) increases the amount of information obtained within the same total measuring time as in standard SI measurements. The gain in information can be used: (a) to choose the most appropriate TE for each metabolite signal with respect to T2, spin coupling, or problems caused by peak overlap; (b) to measure the relaxation time T2 of metabolite signals with high spatial resolution; or (c) to improve the signal-to-noise ratio for metabolite signals with long T2 values by adding spectra calculated from consecutive echoes. The method was tested in vivo on healthy rat brain and applied to study metabolic changes in rat brain lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号