首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlling lithium (Li) electrocrystallization with preferred orientation is a promising strategy to realize highly reversible Li metal batteries (LMBs) but lack of facile regulation methods. Herein, we report a high-flux solid electrolyte interphase (SEI) strategy to direct (110) preferred Li deposition even on (200)-orientated Li substrate. Bravais rule and Curie-Wulff principle are expanded in Li electrocrystallization process to decouple the relationship between SEI engineering and preferred crystal orientation. Multi-spectroscopic techniques combined with dynamics analysis reveal that the high-flux CF3Si(CH3)3 (F3) induced SEI (F3-SEI) with high LiF and −Si(CH3)3 contents can ingeniously accelerate Li+ transport dynamics and ensure the sufficient Li+ concentration below SEI to direct Li (110) orientation. The induced Li (110) can in turn further promote the surface migration of Li atoms to avoid tip aggregation, resulting in a planar, dendrite-free morphology of Li. As a result, our F3-SEI enables ultra-long stability of Li||Li symmetrical cells for more than 336 days. Furthermore, F3-SEI modified Li can significantly enhance the cycle life of Li||LiFePO4 and Li||NCM811 coin and pouch full cells in practical conditions. Our crystallographic strategy for Li dendrite suppression paves a path to achieve reliable LMBs and may provide guidance for the preferred orientation of other metal crystals.  相似文献   

2.
Polymer based quasi-solid-state electrolyte (QSE) has attracted great attention due to its assurance for high safety of rechargeable batteries including lithium metal batteries (LMB). However, it faces the issue of low ionic conductivity of electrolyte and solid-electrolyte-interface (SEI) layer between QSE and lithium anode. Herein, we firstly demonstrate that the ordered and fast transport of lithium ion (Li+) can be realized in QSE. Due to the higher coordination strength of Li+ on tertiary amine (−NR3) group of polymer network than that on carbonyl (−C=O) group of ester solvent, Li+ can diffuse orderly and quickly on −NR3 of polymer, significantly increasing the ionic conductivity of QSE to 3.69 mS cm−1. Moreover, −NR3 of polymer can induce in situ and uniform generation of Li3N and LiNxOy in SEI. As a result, the Li||NCM811 batteries (50 μm Li foil) with this QSE show an excellent stability of 220 cycles at ≈1.5 mA cm−2, 5 times to those with conventional QSE. LMBs with LiFePO4 can stably run for ≈8300 h. This work demonstrates an attractive concept for improving ionic conductivity of QSE, and also provides an important step for developing advanced LMB with high cycle stability and safety.  相似文献   

3.
Uneven lithium (Li) electrodeposition hinders the wide application of high-energy-density Li metal batteries (LMBs). Current efforts mainly focus on the side-reaction suppression between Li and electrolyte, neglecting the determinant factor of mass transport in affecting Li deposition. Herein, guided Li+ mass transport under the action of a local electric field near magnetic nanoparticles or structures at the Li metal interface, known as the magnetohydrodynamic (MHD) effect, are proposed to promote uniform Li deposition. The modified Li+ trajectories are revealed by COMSOL Multiphysics simulations, and verified by the compact and disc-like Li depositions on a model Fe3O4 substrate. Furthermore, a patterned mesh with the magnetic Fe−Cr2O3 core-shell skeleton is used as a facile and efficient protective structure for Li metal anodes, enabling Li metal batteries to achieve a Coulombic efficiency of 99.5 % over 300 cycles at a high cathode loading of 5.0 mAh cm−2. The Li protection strategy based on the MHD interface design might open a new opportunity to develop high-energy-density LMBs.  相似文献   

4.
Silicon oxide-coated lithium aluminum layered double hydroxide (LixAl2-LDH@SiO2) nanocrystals (NCs) are investigated to selectively separate lithium cations in aqueous lithium resources. We directly synthesized LixAl2-LDH NC arrays by oxidation of aluminum foil substrate under a urea and lithium solution. Various lithium salts, including Cl, CO32−, NO3, and SO42−, were applied in aqueous solution to confirm the anion effect on the captured and released lithium quantity of the LixAl2-LDH NCs. In a 5% solution of sulfate ions mix with lithium chloride, the LixAl2-LDH NCs separated a larger quantity of lithium than in other anion conditions. To enhance regeneration stability and lithium selectivity, thin layers of SiO2 were coated onto the LixAl2-LDH nanostructure arrays for inhibition of nanostructure destruction after desorption of lithium cations in hot water. The LixAl2-LDH@SiO2 nanostructures showed enhanced properties for lithium adsorption, including increase of stable regeneration cycles from three to five cycles, and they showed high lithium selectivity in the Mg2+, Na+, and K+ cation mixed aqueous resource. Our nanostructured LDH lithium adsorbents would provide a facile and efficient application for cost-efficient and large-scale lithium production.  相似文献   

5.
In overcoming the Li+ desolvation barrier for low-temperature battery operation, a weakly-solvated electrolyte based on carboxylate solvent has shown promises. In case of an organic-anion-enriched primary solvation sheath (PSS), we found that the electrolyte tends to form a highly swollen, unstable solid electrolyte interphase (SEI) that shows a high permeability to the electrolyte components, accounting for quickly declined electrochemical performance of graphite-based anode. Here we proposed a facile strategy to tune the swelling property of SEI by introducing an inorganic anion switch into the PSS, via LiDFP co-solute method. By forming a low-swelling, Li3PO4-rich SEI, the electrolyte-consuming parasitic reactions and solvent co-intercalation at graphite-electrolyte interface are suppressed, which contributes to efficient Li+ transport, reversible Li+ (de)intercalation and stable structural evolution of graphite anode in high-energy Li-ion batteries at a low temperature of −20 °C.  相似文献   

6.
Constructing efficient artificial solid electrolyte interface (SEI) film is extremely vital for the practical application of lithium metal batteries. Herein, a dense artificial SEI film, in which lithiophilic Zn/LixZny are uniformly but nonconsecutively dispersed in the consecutive Li+-conductors of LixSiOy, Li2O and LiOH, is constructed via the in situ reaction of layered zinc silicate nanosheets and Li. The consecutive Li+-conductors can promote the desolvation process of solvated-Li+ and regulate the transfer of lithium ions. The nonconsecutive lithiophilic metals are polarized by the internal electric field to boost the transfer of lithium ions, and lower the nucleation barrier. Therefore, a low polarization of ≈50 mV for 750 h at 2.0 mA cm−2 in symmetric cells, and a high capacity retention of 99.2 % in full cells with a high lithium iron phosphate areal loading of ≈13 mg cm−2 are achieved. This work offers new sights to develop advanced alkali metal anodes for efficient energy storage.  相似文献   

7.
The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a variety of chemical species that change the properties of the electrode and is closely related to the formation and growth of lithium dendrites. In order to advance the scientific progress of lithium metal more must be understood about the fundamentals of the SEI. One property of the SEI that is particularly critical is the passivating behavior of the different SEI components. This property is critical to the continued formation of SEI and stability of the electrolyte and electrode. Here we report the investigation of the passivation behavior of Li2O, Li2CO3, LiF and LiOH with the lithium salt LiFSI. We used large computational chemistry models that are able to capture the lithium/SEI interface as well as the SEI/electrolyte interface. We determined that LiF and Li2CO3 are the most passivating of the SEI layers, followed by LiOH and Li2O. These results match previous studies of other Li salts and provide further examination of LiFSI reduction.  相似文献   

8.
Lithium metal is a promising anode material for next-generation high-energy-density batteries but suffers from low stripping/plating Coulombic efficiency and dendritic growth particularly at sub-zero temperatures. Herein, a poorly-flammable, locally concentrated ionic liquid electrolyte with a wide liquidus range extending well below 0 °C is proposed for low-temperature lithium metal batteries. Its all-anion Li+ solvation and phase-nano-segregation solution structure are sustained at low temperatures, which, together with a solid electrolyte interphase rich in inorganic compounds, enable dendrite-free operation of lithium metal anodes at −20 °C and 0.5 mA cm−2, with a Coulombic efficiency of 98.9 %. As a result, lithium metal batteries coupling thin lithium metal anodes (4 mAh cm−2) and high-loading LiNi0.8Co0.15Al0.05O2 cathodes (10 mg cm−2) retain 70 % of the initial capacity after 100 cycles at −20 °C. These results, as a proof of concept, demonstrate the applicability of locally concentrated ionic liquid electrolytes for low-temperature lithium metal batteries.  相似文献   

9.
The electrolytes in lithium metal batteries have to be compatible with both lithium metal anodes and high voltage cathodes, and can be regulated by manipulating the solvation structure. Herein, to enhance the electrolyte stability, lithium nitrate (LiNO3) and 1,1,2,2-tetrafuoroethyl-2′,2′,2′-trifuoroethyl(HFE) are introduced into the high-concentration sulfolane electrolyte to suppress Li dendrite growth and achieve a high Coulombic efficiency of >99 % for both the Li anode and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Molecular dynamics simulations show that NO3 participates in the solvation sheath of lithium ions enabling more bis(trifluoromethanesulfonyl)imide anion (TFSI) to coordinate with Li+ ions. Therefore, a robust LiNxOy−LiF-rich solid electrolyte interface (SEI) is formed on the Li surface, suppressing Li dendrite growth. The LiNO3-containing sulfolane electrolyte can also support the highly aggressive LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode, delivering a discharge capacity of 190.4 mAh g−1 at 0.5 C for 200 cycles with a capacity retention rate of 99.5 %.  相似文献   

10.
Lithium metal batteries (LMBs) have attracted extensive attention owing to their high energy density. However, the uncontrolled volume changes and serious dendrite growth of the Li metal anode have hindered their commercialization. Herein, a three-dimensional Cu foam decorated with Au nanoparticles and conformal graphene layer was designed to tune the Li plating/stripping behaviors. The 3D−Cu conductive host anchored by lithiophilic Au nanoparticles can effectively alleviate the volume expansion caused by the continuous plating/stripping of Li and reduce the nucleation energy barrier. Notably, the conductive graphene not only facilitates the transfer of electrons, but also acts as an ionic rectifier, thereby avoiding the aggregation of local current density and Li+ ions around Au nanoparticles and enabling the uniform Li+ flux. As a result, the G−Au@3D−Cu/Li anode ensures the non-dendritic and homogeneous Li+ plating/stripping. Electrochemical results show that the symmetric G−Au@3D−Cu/Li cell delivers a low voltage hysteresis of 110 mV after 1000 h at 1 mA cm−2. Matched with a layered LiNi0.6Co0.2Mn0.2O2 cathode, the NCM622||G−Au@3D−Cu/Li full cell exhibits a long cycle life of 2000 cycles and an ultra-low capacity decay rate (0.01 % per cycle).  相似文献   

11.
A LiClO4 SEI film grown on copper was examined with time-of-flight secondary ion mass spectrometry. The SEI porosity profile and Li+ transport processes within the SEI were studied with isotopically labeled 6LiBF4 electrolyte. An ~ 5 nm porous region, into which electrolytes can easily diffuse, was observed at the electrolyte/SEI interface. Below the porous region, a densely packed layer of Li2O and/or Li2CO3 prevents electrolyte diffusion, but Li+ transports through this region via ion exchange.  相似文献   

12.
High-energy-density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co-solvents with sustained-release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high-loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm−2), and lean electrolytes (6.1 g Ah−1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg−1 for 60 cycles with lean electrolytes (2.3 g Ah−1).  相似文献   

13.
Improved durability, enhanced interfacial stability, and room temperature applicability are desirable properties for all-solid-state lithium metal batteries (ASSLMBs), yet these desired properties are rarely achieved simultaneously. Here, in this work, it is noticed that the huge resistance at Li metal/electrolyte interface dominantly impeded the normal cycling of ASSLMBs especially at around room temperature (<30 °C). Accordingly, a supramolecular polymer ion conductor (SPC) with “weak solvation” of Li+ was prepared. Benefiting from the halogen-bonding interaction between the electron-deficient iodine atom (on 1,4-diiodotetrafluorobenzene) and electron-rich oxygen atoms (on ethylene oxide), the O-Li+ coordination was significantly weakened. Therefore, the SPC achieves rapid Li+ transport with high Li+ transference number, and importantly, derives a unique Li2O-rich SEI with low interfacial resistance on lithium metal surface, therefore enabling stable cycling of ASSLMBs even down to 10 °C. This work is a new exploration of halogen-bonding chemistry in solid polymer electrolyte and highlights the importance of “weak solvation” of Li+ in the solid-state electrolyte for room temperature ASSLMBs.  相似文献   

14.
Li-O2 batteries have garnered much attention due to their high theoretical energy density. However, the irreversible lithium plating/stripping on the anode limits their performance, which has been paid little attention. Herein, a solvation-regulated strategy for stable lithium anodes in tetraethylene glycol dimethyl ether (G4) based electrolyte is attempted in Li-O2 batteries. Trifluoroacetate anions (TFA) with strong Li+ affinity are incorporated into the lithium bis(fluorosulfonyl)imide (LiTFSI)/G4 electrolyte to attenuate the Li+-G4 interaction and form anion-dominant solvates. The bisalt electrolyte with 0.5 M LiTFA and 0.5 M LiTFSI mitigates G4 decomposition and induces an inorganic-rich solid electrolyte interphase (SEI). This contributes to decreased desolvation energy barrier from 58.20 to 46.31 kJ mol−1, compared with 1.0 M LiTFSI/G4, for facile interfacial Li+ diffusion and high efficiency. It yields extended lifespan of 120 cycles in Li-O2 battery with a limited Li anode (7 mAh cm−2). This work gains comprehensive insights into rational electrolyte design for Li-O2 batteries.  相似文献   

15.
Lithium metal batteries (LMBs) comprising Li metal anode and high-voltage nickel-rich cathode could potentially realize high capacity and power density. However, suitable electrolytes to tolerate the oxidation on the cathode at high cut-off voltage are urgently needed. Herein, we present an armor-like inorganic-rich cathode electrolyte interphase (CEI) strategy for exploring oxidation-resistant electrolytes for sustaining 4.8 V Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) batteries with pentafluorophenylboronic acid (PFPBA) as the additive. In such CEI, the armored lithium borate surrounded by CEI up-layer represses the dissolution of inner CEI moieties and also improves the Li+ conductivity of CEI while abundant LiF is distributed over whole CEI to enhance the mechanical stability and Li+ conductivity compared with polymer moieties. With such robust Li+ conductive CEI, the Li||NCM622 battery delivered excellent stability at 4.6 V cut-off voltage with 91.2 % capacity retention after 400 cycles. The excellent cycling performance was also obtained even at 4.8 V cut-off voltage.  相似文献   

16.
《中国化学快报》2023,34(12):108640
Lithium metal batteries (LMBs) are considered to be one of the most promising high-energy-density battery systems. However, their practical application in carbonate electrolytes is hampered by lithium dendrite growth, resulting in short cycle life. Herein, an electrolyte regulation strategy is developed to improve the cyclability of LMBs in carbonate electrolytes by introducing LiNO3 using trimethyl phosphate with a slightly higher donor number compared to NO3 as a solubilizer. This not only allows the formaion of Li+-coordinated NO3 but also achieves the regulation of electrolyte solvation structures, leading to the formation of robust and ion-conductive solid-electrolyte interphase films with inorganic-rich inner and organic-rich outer layers on the Li metal anodes. As a result, high Coulombic efficiency of 99.1% and stable plating/stripping cycling of Li metal anode in Li||Cu cells were realized. Furthermore, excellent performance was also demonstrated in Li||LiNi0.83Co0.11Mn0.06O2 (NCM83) full cells and Cu||NCM83 anode-free cells using high mass-loading cathodes. This work provides a simple interphase engineering strategy through regulating the electrolyte solvation structures for high-energy-density LMBs.  相似文献   

17.
Developing electrolytes compatible with efficient and reversible cycling of electrodes is critical to the success of rechargeable Li metal batteries (LMBs). The Coulombic efficiencies and cycle lives of LMBs with ethylene carbonate (EC), dimethyl carbonate, ethylene sulfite (ES), and their combinations as electrolyte solvents show that in a binary‐solvent electrolyte the extent of electrolyte decomposition on the electrode surface is dependent on the solvent component that dominates the solvation sheath of Li+. This knowledge led to the development of an EC‐ES electrolyte exhibiting high performance for Li||LiFePO4 batteries. Carbonate molecules occupy the solvation sheath and improve the Coulombic efficiencies of both the anode and cathode. Sulfite molecules lead to desirable morphology and composition of the solid electrolyte interphase and extend the cycle life of the Li metal anode. The cooperation between these components provides a new example of electrolyte optimization for improved LMBs.  相似文献   

18.
The mechanism of dissolution of the Li+ ion in an electrolytic solvent is investigated by the direct ab initio molecular dynamics (AIMD) method. Lithium fluoroborate (Li+BF4?) and ethylene carbonate (EC) are examined as the origin of the Li+ ion and the solvent molecule, respectively. This salt is widely utilized as the electrolyte in the lithium ion secondary battery. The binding of EC to the Li+ moiety of the Li+BF4? salt is exothermic, and the binding energies at the CAM–B3LYP/6‐311++G(d,p) level for n=1, 2, 3, and 4, where n is the number of EC molecules binding to the Li+ ion, (EC)n(Li+BF4?), are calculated to be 91.5, 89.8, 87.2, and 84.0 kcal mol?1 (per EC molecule), respectively. The intermolecular distances between Li+ and the F atom of BF4? are elongated: 1.773 Å (n=0), 1.820 Å (n=1), 1.974 Å (n=2), 1.942 Å (n=3), and 4.156 Å (n=4). The atomic bond populations between Li+ and the F atom for n=0, 1, 2, 3, and 4 are 0.202, 0.186, 0.150, 0.038, and 0.0, respectively. These results indicate that the interaction of Li+ with BF4? becomes weaker as the number of EC molecules is increased. The direct AIMD calculation for n=4 shows that EC reacts spontaneously with (EC)3(Li+BF4?) and the Li+ ion is stripped from the salt. The following substitution reaction takes place: EC+(EC)3(Li+BF4?)→(EC)4Li+?(BF4?). The reaction mechanism is discussed on the basis of the theoretical results.  相似文献   

19.
Li−O2 batteries with bis(trifluoromethanesulfonyl)imide-based ionic liquid (TFSI-IL) electrolyte are promising because TFSI-IL can stabilize O2 to lower charge overpotential. However, slow Li+ transport in TFSI-IL electrolyte causes inferior Li deposition. Here we optimize weak solvating molecule (anisole) to generate anisole-doped ionic aggregate in TFSI-IL electrolyte. Such unique solvation environment can realize not only high Li+ transport parameters but also anion-derived solid electrolyte interface (SEI). Thus, fast Li+ transport is achieved in electrolyte bulk and SEI simultaneously, leading to robust Li deposition with high rate capability (3 mA cm−2) and long cycle life (2000 h at 0.2 mA cm−2). Moreover, Li−O2 batteries show good cycling stability (a small overpotential increase of 0.16 V after 120 cycles) and high rate capability (1 A g−1). This work provides an effective electrolyte design principle to realize stable Li deposition and high-performance Li−O2 batteries.  相似文献   

20.
To optimize the rapid transport of lithium ions (Li+) inside lithium metal batteries (LMBs), block copolymer electrolytes (BCPEs) have been fabricated in situ in LMBs via a one-step method combining reversible addition-fragmentation chain transfer (RAFT) polymerization and carboxylic acid-catalyzed ring-opening polymerization (ROP). The BCPEs balanced the Li+ coordination characteristics of the polyether- and polyester-based electrolytes to achieve a rapid Li+ migration in the SPEs. The carboxylic acid played a dual role since it both catalyzed the ROP and stabilized the interface. Furthermore, the in situ assembly of LMBs did effectively enable an efficient intercalation/de-intercalation of Li+ at the electrode/electrolyte interface. The in situ assembled Li/BCPE4/LFP exhibited high-capacity retention of 92 % after 400 cycles at 1 C. The one-step in situ fabrication of BCPEs provides a new direction for the design of polymer electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号