首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hysteresis in Ni/Pb multilayers with layer thickness of 1.7, 5.5, 9.4 and 24.8 nm have been examined at low and room temperatures. The Stoner-Wohlfarth model, modified by the introduction of a constant internal field, well describes the shape of experimental hysteresis loops. The two components of internal field and anisotropy constant are fit to an individual loop. The transversal component of the internal field is related to a dispersion of local magnetization directions and determines a deviation of the rotation process from the Stoner-Wohlfarth model. At room temperature, the transversal component of the internal field for Ni/Pb multilayers is about 1000 Oe and is much greater than the effective anisotropy field and, as a result, the directions of magnetization rotate smoothly under the influence of resultant field. At low temperature, the longitudal component of the internal field is of the order of 1000 Oe and determines the incoherent rotations.  相似文献   

2.
The hardness, elastic modulus and scratch behaviors of Ag/Ni mulitlayers deposited by evaporation have been carried out by nanoindentation and nanoscratch. It has been found that the hardness (H) increases, while the modulus (E) decreases, that is to say an increase of H/E as the periodicity decreases. Many mechanisms are included in nanoscratch, including initial elastic contact, plowing and fracture stage, in each multilayer. Coefficient of friction during plowing decreases with the decrease of the periodicity, which can be ascribed to decreasing material pile-up due to the increase of H/E. Elastic recovery after scratching also increases as the periodicity decreases because of the increase of H/E, which leads to improved wear resistance. The fracture stage will be postponed with decreasing periodicity, which also leads to better wear behavior.  相似文献   

3.
Magnetic hysteresis loops reflect the variety of magnetic domain structures and have been considered to have normal rectangular or leaf-like shapes in standard ferromagnets such as Fe and Ni metals. We report on observations of constricted hysteresis loops in Fe and Ni single crystals with very low defect densities. The constricted loops were observed below T=150 K and in a medium temperature range from 150 to 430 K in Fe and Ni single crystals, respectively. These constricted loops disappear by weak plastic deformation for both single crystals. The origin of constricted hysteresis loops was explained by eddy current effects under less domain wall pinning due to dislocations.  相似文献   

4.
We have studied similarity rules of quasistatic minor hysteresis loops for Fe and Ni single crystals in the wide temperature range from 10 to 600 K. Two similarity rules of MR*/Ma*∼3/4 and WR*/WF*∼1/6, were found in a medium field range where irreversible movement of Bloch walls plays a crucial role for magnetization; Ma*, MR*, WF*, and WR* are magnetization, remanence, hysteresis loss, and remanence work of a minor hysteresis loop. The similarity rules hold true, being almost independent of kinds of ferromagnets, applied stress, and temperature. The origin was discussed from the viewpoint of pinning effects due to dislocations as well as eddy current effects which become predominant at low temperatures for samples with low dislocation density.  相似文献   

5.
We show that it is possible to have hysteretic behavior for magnets that does not form simple closed loops in steady state, but cycles multiple times before returning to its initial state. We show this by studying the low temperature dynamics of the 3D Edwards-Anderson spin glass. The specific multiple varies from system to system and is often quite large and increases with system size. The last result suggests that the magnetization could be aperiodic in the large system limit for some realizations of randomness. It should be possible to observe this phenomenon experimentally.  相似文献   

6.
K.Y. Yu  C. Sun  Y. Chen  Y. Liu  H. Wang  M.A. Kirk 《哲学杂志》2013,93(26):3547-3562
Monolithic Ag and Ni films and Ag/Ni multilayers with individual layer thickness of 5 and 50?nm were subjected to in situ Kr ion irradiation at room temperature to 1 displacement-per-atom (a fluence of 2?×?1014?ions/cm2). Monolithic Ag has high density of small loops (4?nm in diameter), whereas Ni has fewer but much greater loops (exceeding 20?nm). In comparison, dislocation loops, ~4?nm in diameter, were the major defects in the irradiated Ag/Ni 50?nm film, while the loops were barely observed in the Ag/Ni 5?nm film. At 0.2?dpa (0.4?×?1014?ions/cm), defect density in both monolithic Ag and Ni saturated at 1.6 and 0.2?×?1023/m3, compared with 0.8?×?1023/m3 in Ag/Ni 50?nm multilayer at a saturation fluence of ~1?dpa (2?×?1014?ions/cm2). Direct observations of frequent loop absorption by layer interfaces suggest that these interfaces are efficient defect sinks. Ag/Ni 5?nm multilayer showed a superior morphological stability against radiation compared to Ag/Ni 50?nm film.  相似文献   

7.
8.
9.
The magnetic moments in Ni/Pt multilayers are thoroughly studied by combining experimental and ab initio theoretical techniques. SQUID magnetometry probes the samples' magnetizations. X-ray magnetic circular dichroism separates the contribution of Ni and Pt and provides a layer-resolved magnetic moment profile for the whole system. The results are compared to band-structure calculations. Induced Pt magnetic moments localized mostly at the interface are revealed. No magnetically "dead" Ni layers are found. The magnetization per Ni volume is slightly enhanced compared to bulk NiPt alloys.  相似文献   

10.
The magnetic properties of Ni/Pd multilayers, prepared by sequential evaporation in ultrahigh vacuum, have been studied. The Ni thickness dependence of the magnetization and magnetic anisotropy is discussed. The temperature dependence of the spontaneous magnetization is well described by a T3/2 law in all multilayers. A spin-wave theory has been used to explain the temperature dependence of the spontaneous magnetization, and the approximate values for the exchange interactions for various Ni layer thicknesses have been obtained.  相似文献   

11.
12.
Nearly perpendicular magnetic hyperfine fields have been observed for the first time in the Ag "spacers" of Fe/Ag multilayers using low temperature nuclear orientation of (110)Ag(m) at 6 mK. At the same time, vibrating sample magnetometry measurements at temperatures down to 4 K have shown the magnetic anisotropy of the Fe to be in plane. The direction of the Ag hyperfine field is thus noncollinear (nearly orthogonal) to the Fe anisotropy. These results are compared with full potential linearized augmented plane wave calculations using the wien97 code.  相似文献   

13.
The distinct hysteresis loops (HLs) of ferromagnetic/antiferromagnetic (FM/AFM) two-layer Bethe lattice with the Ising spins of the top layer having only FM interactions and the bottom ones having only AFM interactions with the interlayer coupling is either FM or AFM type are studied by using a pairwise approach. The sublattice magnetizations are studied by increasing and decreasing the external magnetic field (H) to obtain the HLs. The shapes of the HLs are strongly dependent on the competitions among the system parameters and on the phase configurations. The HLs are formed only when the AFM-type interactions are involved. The small loops of hysteresis are also formed because of the reentrant behavior in the FM region.  相似文献   

14.
Polarized neutron reflectometry is used to probe the in-plane projection of the net-magnetization vector M--> of polycrystalline Fe films exchange coupled to twinned (110) MnF (2) or FeF (2) antiferromagnetic (AF) layers. The magnetization reversal mechanism depends upon the orientation of the cooling field with respect to the twinned microstructure of the AF, and whether the applied field is increased to (or decreased from) a positive saturating field; i.e. , the magnetization reversal is asymmetric. The reversal of the sample magnetization from one saturated state to the other occurs via either domain wall motion or magnetization rotation on opposite sides of the same hysteresis loop.  相似文献   

15.
In this work, the variation of the magnetic moments of the Ni/Pt multilayers are studied using the linearized augmented plane waves (LAPW) method in the framework of the density functional theory (DFT) implemented in the version of WIEN2K program. The systems have been modeled by seven layers slab separated in z direction by a vacuum region of four substrate layers. We present the results of the dependence of the magnetic properties with respect to the thickness variation of the different multilayers. The modeling of these systems finds an important empirical support. Experiment and theory show the same trends for the magnetic moments: hybridization effects between Ni and Pt are mostly localized at the interface.  相似文献   

16.
Inverted hysteresis loops (IHL) of negative net area have been measured for some films using vibrating sample magnetometer (VSM), SQUID magnetometer or magneto-optic Kerr effect magnetometer. All of the IHL were observed in the field direction along the hard axis. An IHL violates the thermo-mechanical second law. This work points out that an IHL arises when |Mx|?|Mz||Mx|?|Mz| (Mx and Mz: the parallel and normal to the field direction components of magnetization vector) if the sample is set at certain inappropriate positions in VSM and SQUID magnetometer experiments, and the sense voltage is solely attributed to Mx while it also relates to Mz.  相似文献   

17.
18.
Microstructures of He ion-implanted pure Ag, pure V and polycrystalline V/Ag multilayers with individual layer thickness ranging from 1?nm to 50?nm were investigated by transmission electron microscopy (TEM). The bubbles in the Ag layer were faceted and larger than the non-faceted bubbles in the V layer under the same implantation conditions for both pure metals and multilayers. The substantially higher single defects surviving the spike phase and lower mobility of trapped He in bcc than those in fcc could account for this difference. For multilayers, the bubbles nucleate at interfaces but grow preferentially in Ag layers due to high mobility of trapped He in fcc Ag. In addition, the He concentration above which bubbles can be detected in defocused TEM images increases with decreasing layer thickness, from 0 for pure Ag to 4–5 at. % for 1?nm V/1?nm Ag multilayers. In contrast, the bubble size decreases with decreasing layer thickness, from approximately 4?nm in diameter in pure Ag to 1?nm in the 1?nm V/1?nm Ag multilayers. Elongated bubbles confined in the Ag layer by the V–Ag interfaces were observed in 1?nm multilayers. These observations show that bubble nucleation and growth can be suppressed to high He concentrations in nanoscale composites with interfaces that have high He solubility.  相似文献   

19.
20.
Giant magnetoresistance (GMR) effect and magnetisation reversal processes have been investigated in Py/Cu(Py=Ni83Fe17,permalloy) multilayers (Mls) obtained by face-to-face sputtering method. The investigated films had constant sublayer thicknesses both for Py and Cu (dCu=2nm,dPy=2nm) and various numbers of ferromagnetic sublayers. It has been shown that for such Mls a high field sensitivity of GMR effect (S≈0.4%/Oe) and negligible hysteresis can be obtained for a low number of Py layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号