首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of conjugated polymers especially n-type polymer semiconductors is powered by the design and synthesis of electron-deficient building blocks. Herein, a strong acceptor building block with di-metallaaromatic structure was designed and synthesized by connecting two electron-deficient metallaaromatic units through a π-conjugated bridge. Then, a double-monomer polymerization methodology was developed for inserting it into conjugated polymer scaffolds to yield metallopolymers. The isolated well-defined model oligomers indicated polymer structures. Kinetic studies based on nuclear magnetic resonance and ultraviolet–visible spectroscopies shed light on the polymerization process. Interestingly, the resulted metallopolymers with dπ–pπ conjugations are very promising electron transport layer materials which can boost photovoltaic performance of an organic solar cell, with power conversion efficiency up to 18.28 % based on the PM6 : EH-HD-4F non-fullerene system. This work not only provides a facile route to construct metallaaromatic conjugated polymers with various functional groups, but also discovers their potential applications for the first time.  相似文献   

2.
Developing high-performance but low-cost n-type polymers remains a significant challenge in the commercialization of organic field-effect transistors (OFETs). To achieve this objective, it is essential to design the key electron-deficient units with simple structures and facile preparation processes, which can facilitate the production of low-cost n-type polymers. Herein, by sequentially introducing fluorine and cyano functionalities onto trans-1,3-butadiene, we developed a series of structurally simple but highly electron-deficient building blocks, namely 1,4-dicyano-butadiene ( CNDE ), 3-fluoro-1,4-dicyano-butadiene ( CNFDE ), and 2,3-difluoro-1,4-dicyano-butadiene ( CNDFDE ), featuring a highly coplanar backbone and deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels (−3.03–4.33 eV), which render them highly attractive for developing n-type semiconducting polymers. Notably, all these electron-deficient units can be easily accessed by a two-step high-yield synthetic procedure from low-cost raw materials, thus rendering them highly promising candidates for commercial applications. Upon polymerization with diketopyrrolopyrrole ( DPP ), three copolymers were developed that demonstrated unipolar n-type transport characteristics in OFETs with the highest electron mobility of >1 cm2 V−1 s−1. Hence, CNDE , CNFDE , and CNDFDE represent a class of novel, simple, and efficient electron-deficient units for constructing low-cost n-type polymers, thereby providing valuable insight for OFET applications.  相似文献   

3.
High charge carrier mobility polymer semiconductors are always semi-crystalline. Amorphous conjugated polymers represent another kind of polymer semiconductors with different charge transporting mechanism. Here we report the first near-amorphous n-type conjugated polymer with decent electron mobility, which features a remarkably rigid, straight and planar polymer backbone. The molecular design strategy is to copolymerize two fused-ring building blocks which are both electron-accepting, centrosymmetrical and planar. The polymer is the alternating copolymer of double B←N bridged bipyridine (BNBP) unit and benzobisthiazole (BBTz) unit. It shows a decent electron mobility of 0.34 cm2 V−1 s−1 in organic field-effect transistors. The excellent electron transporting property of the polymer is possibly due to the ultrahigh backbone stiffness, small π-π stacking distance, and high molecular weight.  相似文献   

4.
Typical n-type conjugated polymers are based on fused-ring electron-accepting building blocks. Herein, we report a non-fused-ring strategy to design n-type conjugated polymers, i.e. introducing electron-withdrawing imide or cyano groups to each thiophene unit of a non-fused-ring polythiophene backbone. The resulting polymer, n-PT1 , shows low LUMO/HOMO energy levels of −3.91 eV/−6.22 eV, high electron mobility of 0.39 cm2 V−1 s−1 and high crystallinity in thin film. After n-doping, n-PT1 exhibits excellent thermoelectric performance with an electrical conductivity of 61.2 S cm−1 and a power factor (PF) of 141.7 μW m−1 K−2. This PF is the highest value reported so far for n-type conjugated polymers and this is the first time for polythiophene derivatives to be used in n-type organic thermoelectrics. The excellent thermoelectric performance of n-PT1 is due to its superior tolerance to doping. This work indicates that polythiophene derivatives without fused rings are low-cost and high-performance n-type conjugated polymers.  相似文献   

5.
All-polymer solar cells (all-PSCs) have attracted considerable attention owing to their pronounced advantages of excellent mechanical flexibility/stretchability and greatly enhanced device stability as compared to other types of organic solar cells (OSCs). Thanks to the extensive research efforts dedicated to the development of polymer acceptors, all-PSCs have achieved remarkable improvement of photovoltaic performance, recently. This review summarizes the recent progress of polymer acceptors based on the key electron-deficient building blocks, which include bithiophene imide (BTI) derivatives, boron-nitrogen coordination bond (B←N)-incorporated (hetero)arenes, cyano-functionalized (hetero)arenes, and fused-ring electron acceptors (FREAs). In addition, single-component-based all-PSCs are also briefly discussed. The structure-property correlations of polymer acceptors are elaborated in detail. Finally, we offer our insights into the development of new electron-deficient building blocks with further optimized properties and the polymers built from them for efficient all-PSCs.  相似文献   

6.
Polycyclic aromatic hydrocarbon (PAH) structures with suitable electron-withdrawing groups are useful building blocks for developing optical and electron-transporting materials. Here, we report the application of a double benzannulation process to the syntheses of PAH diimides with enlarged π-frameworks featuring a central anthracene moiety. The preparations are realized by copper-catalyzed [4+2] cycloaddition of ethynyl-substituted aromatic dicarboximide to 2,5-bis(phenylethynyl)terephthalaldehyde, followed by intramolecular photocyclization or direct arylation via Heck cross coupling. A central symmetric benzo[1,2-k:4,5-k′]-bis(fluoranthene)-3,4,12,13-tetracarboxyl diimide (BFDI) is acquired, with the single crystal structure revealing its completely planar polycyclic skeleton. Such a shape-persistent PAH expectedly exhibits a tendency to stack face-to-face and forms J-aggregates. Moreover, BFDI can be difunctionalized site-selectively at the reactive 9 and 10 positions of the anthracene unit and then applied to prepare conjugated polymers. When coupled with 1,4-diketopyrrolo[3,4-c]-pyrrole (DPP) via thiophene and dithiophene linkers, two polymers with significantly broadened absorption bands extended to the near-infrared regime are obtained, evidencing the effective π-conjugative extension ability of BFDI unit.  相似文献   

7.
近年来,有机场效应晶体管(OFETs)由于在柔性器件和可穿戴电子学中的潜在应用受到了学术界和工业界的普遍关注,尤其是以聚合物半导体材料构筑的晶体管性能得到了快速的发展.如何设计合成用于OFETs的高性能聚合物半导体材料,一直是我们的追求目标.然而,分子结构对迁移率的影响仍缺少系统的比较.本文综述了近年来国内外新型聚合物材料的最新进展.我们按照材料的种类以及载流子的传输类型进行了分类,对高性能聚合物材料的发展过程、材料的设计思路以及相应的FETs性能进行了系统地归纳总结.通过研究分子及分子聚集态结构与器件性能之间的关系,希望为以后设计合成新型的高性能的聚合物材料提供有益的借鉴和指导.  相似文献   

8.
As a rigid and planar aza-based heteroaromatic scaffold, hexaazatriphenylene (HAT) exhibits excellent electron-deficient property and high π-π stacking tendency, which makes it an ideal building block in the construction of supramolecular architectures and functional materials. In addition, HATs have also been picked out as building blocks for the construction of novel porous organic polymers, one of the most attractive fields of porous materials in the past decade, which includes intrinsic microporosity (PIMs), π-conjugated microporous polymers (CMPs), and covalent organic frameworks (COFs). In this digest paper, the synthetic methods of HAT derivatives have been briefly introduced and some recent advances of HATs in the applications of supramolecular self-assembly and porous organic materials have been highlighted.  相似文献   

9.
Strongly electron-deficient (n-type) main-chain π-conjugated polymers are commonly prepared via well-established step-growth polycondensation protocols which enable limited control over polymerization. Here we demonstrate that activated Zn and electron-deficient brominated thiophene-naphthalene diimide oligomers form anion-radical complexes instead of conventional Zn-organic derivatives. These highly unusual zinc complexes undergo Ni-catalyzed chain-growth polymerization leading to n-type conjugated polymers with controlled molecular weight, relatively narrow polydispersities, and specific end-functions.  相似文献   

10.
We propose a new type of sulfonated aromatic polyarylenes as candidate building blocks for proton exchange membranes. Density functional theory calculations and ab initio molecular dynamics simulations suggest that desulfonation is limited at high temperatures, owing to the strong aryl-SO3H bond induced by the electron-deficient aromatic ring, and that the proposed polymers exhibit good thermomechanical stability due to the robust aromatic main-chain repeating unit. Simulations also emphasize the importance of the Grotthuss-type mechanism, with interconversion between Eigen (H9O4+) and Zundel cations (H5O2+) as limiting structures, for the hydrated proton transport in the vicinity of the sulfonic acid groups.  相似文献   

11.
The primary challenge for n-type small-molecule organic electrochemical transistors (OECTs) is to improve their electron mobilities and thus the key figure of merit μC*. Nevertheless, few reports in OECTs have specially proposed to address this issue. Herein, we report a 10-ring-fused polycyclic π-system consisting of the core of naphthalene bis-isatin dimer and the terminal moieties of rhodanine, which features intramolecular noncovalent interactions, high π-delocalization and strong electron-deficient characteristics. We find that this extended π-conjugated system using the ring fusion strategy displays improved electron mobilities up to 0.043 cm2 V−1 s−1 compared to our previously reported small molecule gNR, and thereby leads to a remarkable μC* of 10.3 F cm−1 V−1 s−1 in n-type OECTs, which is the highest value reported to date for small-molecule OECTs. This work highlights the importance of π-conjugation extension in polycyclic-fused molecules for enhancing the performance of n-type small-molecule OECTs.  相似文献   

12.
Exploiting noncovalent π-interactions particularly emerging anion-π interactions to drive efficient catalysis is fascinating. Even with exciting progresses, can anion-π activation operate in water remains elusive. Here we report the design, synthesis and catalytic studies of a class of water-soluble electron-deficient molecular cages and relevant aromatic slide compounds. The prism-like cages contain three divided, long, cationic aromatic walls which constitute three highly electron-deficient V-shape cavities. They were efficiently synthesized in two steps from a parent triformyl cage in gram-scale. Crystal structure showed the π-walls bind to the counter bromide through strong anion-π interactions. Just 5 mol% of cages were effective in catalyzing decarboxylative Aldol reactions of aldehydes and malonic acid half thioesters in water but not in organic solvents, showing a pronounced hydrophobic amplification effect. Meantime, a series of single π-slides resembling the π-wall of the cage performed equally well, while those lacking an extended π-surface were ineffective, highlighting the essential role of electron-deficient π-face on promoting the conversion.  相似文献   

13.
The band structure of a class of quasi 1-dimensional (1-D) polymers with anti-aromatic structural units — anti-aromatic polymers (AAP) — has been investigated theoretically. The energy gap (EG) of the AAP is significantly smaller compared to the EG of polymers with aromatic building blocks having the same number of π-centers in the elementary units. The influence of the electron correlation in the calculation of the EG is investigated. As with the anti-aromatic molecules the Jahn-Teller distortion influences the geometric configuration of the AAP.  相似文献   

14.
The shortage of narrow band gap polymer acceptors with high electron mobility is the major bottleneck for developing efficient all-polymer solar cells (all-PSCs). Herein, we synthesize a distannylated electron-deficient biselenophene imide monomer (BSeI-Tin) with high purity/reactivity, affording an excellent chance to access acceptor–acceptor (A–A) type polymer acceptors. Copolymerizing BSeI-Tin with dibrominated monomer Y5-Br, the resulting A–A polymer PY5-BSeI shows a higher molecular weight, narrower band gap, deeper-lying frontier molecular orbital levels and larger electron mobility than the donor–acceptor type counterpart PY5-BSe. Consequently, the PY5-BSeI-based all-PSCs deliver a remarkable efficiency of 17.77 % with a high short-circuit current of 24.93 mA cm−2 and fill factor of 75.83 %. This efficiency is much higher than that (10.70 %) of the PY5-BSe-based devices. Our study demonstrates that BSeI is a promising building block for constructing high-performance polymer acceptors and stannylation of electron-deficient building blocks offers an excellent approach to developing A–A type polymers for all-PSCs and even beyond.  相似文献   

15.
Organic semiconductor materials, especially donor–acceptor (D–A) polymers, have been increasingly applied in organic optoelectronic devices, such as organic field-effect transistors (OFETs) and organic solar cells (OSCs). Plenty of high-performance OFETs and OSCs have been achieved based on varieties of structurally modified D–A polymers. As the basic building block of D–A polymers, acceptor moieties have drawn much attention. Among the numerous types, lactam- and imide-functionalized electron-deficient building blocks have been widely investigated. In this review, the structural evolution of lactam- or imide-containing acceptors (for instance, diketopyrrolopyrrole, isoindigo, naphthalene diimide, and perylene diimide) is covered and their representative polymers applied in OFETs and OSCs are also discussed, with a focus on the effect of varied structurally modified acceptor moieties on the physicochemical and photoelectrical properties of polymers. Additionally, this review discusses the current issues that need to be settled down and the further development of new types of acceptors. It is hoped that this review could help design new electron-deficient building blocks, find a more valid method to modify already reported acceptor units, and achieve high-performance semiconductor materials eventually.

This review highlights the recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells.  相似文献   

16.
Synthetically versatile electron-deficient π-electron systems are urgently needed for organic electronics, yet their design and synthesis are challenging due to the low reactivity from large electron affinities. In this work, we report a benzo[de]isoquinolino[1,8-gh]quinoline diamide (BQQDA) π-electron system. The electron-rich condensed amide as opposed to the generally-employed imide provides a suitable electronic feature for chemical versatility to tailor the BQQDA π-electron system for various electronic applications. We demonstrate an effective synthetic method to furnish the target BQQDA parent structure, and highly selective functionalization can be performed on bay positions of the π-skeleton. In addition, thionation of BQQDA can be accomplished under mild conditions. Fine-tuning of fundamental properties and supramolecular packing motifs are achieved via chemical modifications, and the cyanated BQQDA organic semiconductor demonstrates a high air-stable electron-carrier mobility.  相似文献   

17.
N-type semiconducting polymers are attractive for organic electronics, but desirable electron-deficient units for synthesizing such polymers are still lacking. As a cousin of rylene diimides such as naphthalene diimide (NDI) and perylene diimide (PDI), anthracene diimide (ADI) is a promising candidate; its polymers, however, have not been achieved yet because of synthetic challenges for its polymerizable monomers. Herein, we present ingenious synthesis of two dibromide ADI monomers with dibromination at differently symmetrical positions of the ADI core, which are further employed to construct ADI polymers. More interestingly, the two obtained ADI polymers possess the same main-chain and alkyl-chain structures but different backbone conformations owing to varied linking positions between repeating units. This feature enables their different optoelectronic properties and film-state packing behavior. The ADI polymers offer first examples of conjugated polymer conformational isomers and are highly promising as a new class of n-type semiconductors for various organic electronics applications.

Two anthracene diimide (ADI) polymers with the backbone conformational isomerism, new members of aromatic diimide polymers family, have been synthesized as a class of highly promising n-type semiconductors for organic electronics.  相似文献   

18.
Carbon nanotubes (CNTs) possessing unique structure and properties are attractive building blocks for novel materials and devices of important practical interest. However, the insolubility or poor dispersibility of pristine CNTs in common solvents poses a serious obstacle to their further development. To effectively utilize CNTs as building blocks for nanotechnology, CNTs have been covalently and noncovalently functionalized in a number of ways to render them soluble in aqueous or organic solutions. Here, we review recent progress and advances that have been made on dispersion of carbon nanotubes in aqueous and organic media by non‐covalent functionalization with surfactants and polymers.  相似文献   

19.
Current approaches to synthesize π-conjugated polymers (CPs) are dominated by thermally driven, transition-metal-mediated reactions. Herein we show that electron-deficient Grignard monomers readily polymerize under visible-light irradiation at room temperature in the absence of a catalyst. The product distribution can be tuned by the wavelength of irradiation based on the absorption of the polymer. Conversion studies are consistent with an uncontrolled chain-growth process; correspondingly, chain extension produces all-conjugated n-type block copolymers. Preliminary results demonstrate that the polymerization can be expanded to donor–acceptor alternating copolymers. We anticipate that this method can serve as a platform to access new architectures of n-type CPs without the need for transition-metal catalysis.  相似文献   

20.
Polycyclic aromatic hydrocarbons(PAHs), are regarded as molecular fragments of graphene and are facilely available through chemical synthesis. Recently, it is found collective charge density oscillations with strong induced electromagnetic field display in PAH derivatives. This phenomenon, analogue to plasmonic excitation in metal, called molecular plasmonics, arise the significant interest of physicists. Instead of discussing its rich physics, this work aims at the application of molecular plas...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号