首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recently developed theory for the motion of a classical particle in a random array of scatterers is improved and extended to discuss the effects of weak and intermediate magnetic fields. By deriving expressions for the general relaxation kernels it is shown that only the current relaxation kernel is the physical relevant one diverging at the percolation edge. The percolation density and localization length turn out to be independent of the magnetic field. A negative magneto resistance at low scatterer density, a positive magneto resistance at larger density and a non classical Hall coefficient are obtained. For the velocity correlation spectrum a shift of the cyclotron resonance to higher frequency and a new low frequency side peak is predicted.  相似文献   

2.
Percolation objects were fabricated based on computer-generated, two- or three-dimensional templates. Random-site, semi-continuous swiss cheese, and semi-continuous inverse swiss-cheese percolation models above the percolation threshold were considered. The water-filled pore space was investigated by NMR imaging and, in the presence of a pressure gradient, NMR velocity mapping. The fractal dimension, the correlation length, and the percolation probability were evaluated both from the computer-generated templates and the corresponding NMR spin density maps. Based on velocity maps, the percolation backbones were determined. The fractal dimension of the backbones turned out to be smaller than that of the complete cluster. As a further relation of interest, the volume-averaged velocity was calculated as a function of the probe volume radius. In a certain scaling window, the resulting dependence can be represented by a power law the exponent of which was not yet considered in the theoretical literature. The experimental results favorably compare to computer simulations based on the finite-element method (FEM) or the finite-volume method (FVM). Percolation theory suggests a relationship between the anomalous diffusion exponent and the fractal dimension of the cluster, i.e., between a dynamic and a structural parameter. We examined interdiffusion between two compartments initially filled with H2O and D2O, respectively, by proton imaging. The results confirm the theoretical expectation. As a third transport mechanism, thermal convection in percolation clusters of different porosities was studied with the aid of NMR velocity mapping. The velocity distribution is related to the convection roll size distribution. Corresponding histograms consist of a power law part representing localized rolls, and a high-velocity cut-off for cluster-spanning rolls. The maximum velocity as a function of the porosity clearly visualizes the percolation transition.  相似文献   

3.
Within a recently introduced model based on the bond-fluctuation dynamics, we study the viscoelastic behaviour of a polymer solution at the gelation threshold. We here present the results of the numerical simulation of the model on a cubic lattice: the percolation transition, the diffusion properties and the time autocorrelation functions have been studied. From both the diffusion coefficients and the relaxation times critical behaviour a critical exponent k for the viscosity coefficient has been extracted: the two results are comparable within the errors giving , in close agreement with the Rouse model prediction and with some experimental results. In the critical region below the transition threshold the time autocorrelation functions show a long-time tail which is well fitted by a stretched exponential decay. Received 20 December 1999 and Received in final form 18 February 2000  相似文献   

4.
We give the results of a numerical study of the motion of a point particle in ad-dimensional array of spherical scatterers (Sinai's billiard without horizon). We find a simple universal law for the Lyapounov exponent (as a function ofd) and a stretched exponential decay for the velocity autocorrelation as a function of the number of collisions. The diffusion seems to be anomalous in this problem. Ergodicity is used to predict the shape of the probability distribution of long free paths. Physical interpretations or clues are proposed.  相似文献   

5.
Diffusion in disordered systems does not follow the classical laws which describe transport in ordered crystalline media, and this leads to many anomalous physical properties. Since the application of percolation theory, the main advances in the understanding of these processes have come from fractal theory. Scaling theories and numerical simulations are important tools to describe diffusion processes (random walks: the ‘ant in the labyrinth’) on percolation systems and fractals. Different types of disordered systems exhibiting anomalous diffusion are presented (the incipient infinite percolation cluster, diffusion-limited aggregation clusters, lattice animals, and random combs), and scaling theories as well as numerical simulations of greater sophistication are described. Also, diffusion in the presence of singular distributions of transition rates is discussed and related to anomalous diffusion on disordered structures.  相似文献   

6.
Diffusion in disordered systems does not follow the classical laws which describe transport in ordered crystalline media, and this leads to many anomalous physical properties. Since the application of percolation theory, the main advances in the understanding of these processes have come from fractal theory. Scaling theories and numerical simulations are important tools to describe diffusion processes (random walks: the 'ant in the labyrinth') on percolation systems and fractals. Different types of disordered systems exhibiting anomalous diffusion are presented (the incipient infinite percolation cluster, diffusion-limited aggregation clusters, lattice animals, and random combs), and scaling theories as well as numerical simulations of greater sophistication are described. Also, diffusion in the presence of singular distributions of transition rates is discussed and related to anomalous diffusion on disordered structures.  相似文献   

7.
C. P. Lowe  D. Frenkel 《Physica A》1995,220(3-4):251-260
We have calculated the velocity autocorrelation function for a tracer particle in a model two-dimensional fluid. The fluid was represented by a lattice Boltzmann equation with imposed fluctuations. By choosing a low Boltzmann diffusion coefficient for the tracer, the diverging contribution to the diffusion coefficient can be made to exceed the Boltzmann value even at short times. We were thus able to find evidence for the renormalized, or ‘super long-time’, decay of the VACF in a two-dimensional fluid. We find quantitative evidence for the 1/t√ln(t) decay predicted by theory.  相似文献   

8.
We study relaxation towards a stationary out-of-equilibrium state by analyzing a one-dimensional stochastic process followed by a particle accelerated by an external field and propagating through a thermal bath. The effect of collisions is described within one-dimensional formulation of Boltzmann’s kinetic theory. We present analytical solutions for the Maxwell gas and for the very hard particle model. The exponentially fast relaxation of the velocity distribution towards the stationary form is demonstrated. In the reference frame moving with constant drift velocity the hydrodynamic diffusive mode is shown to govern the distribution in the position space. We show that the exact value of the diffusion coefficient for any value of the field is correctly predicted by the Green-Kubo autocorrelation formula generalized to the stationary state.  相似文献   

9.
《Physics letters. A》2014,378(1-2):1-9
We study a generalized Langevin equation for a free particle driven by N internal noises. The mean square displacement and velocity autocorrelation function are derived in case of a mixture of Dirac delta, power law and Mittag-Leffler noises. Additionally, a frictional memory kernel of distributed order is considered. The long time limit and short time limit are analyzed, and the dominant contributions of noises on particle dynamics is discussed. Various different diffusive behaviors (subdiffusion, superdiffusion, normal diffusion, ultraslow diffusion) are obtained. The considered problem may be used in the theory of anomalous diffusion in complex environment.  相似文献   

10.
The long-time behavior of transport coefficients in a model for spatially heterogeneous media in two and three dimensions is investigated by molecular dynamics simulations. The behavior of the velocity autocorrelation function is rationalized in terms of a competition of the critical relaxation due to the underlying percolation transition and the hydrodynamic power-law anomalies. In two dimensions and in the absence of a diffusive mode, another power-law anomaly due to trapping is found with an exponent -3 instead of -2. Further, the logarithmic divergence of the Burnett coefficient is corroborated in the dilute limit; at finite density, however, it is dominated by stronger divergences.  相似文献   

11.
A common explanation is given for ion transport and strong broadband density fluctuations in tokamaks as a result of large anomalous electron transport near dominant magnetic surfaces (resp. in small magnetic islands). The main mechanism is local density flattening connected with an anomalous electron transport induced instationary radial electric field, which forces the ions via polarization drift to follow the electrons. For the density flattening process an exact solution of the time-dependent diffusion equation for a linear initial profile over the island width is used. From this we also derive an expression for a temporal growing radial electric field. This positive field reaches its maximum at the density plateau. Strong viscous diffusion or instability-induced transport between high and low electric field regions may now reverse the density flattening. Therefore relaxation oscillations result which may also explain the observed strong density and potential fluctuations in tokamaks. Several details of recent measurements of impurity ion behaviour and density fluctuations in tokamaks may be better explained with the theory given here.  相似文献   

12.
We study the diffusion of classical hard-core particles in disordered lattices within the formalism of a quantum spin representation. This analogy enables an exact treatment of noninstantaneous correlation functions at finite particle densities in terms of single spin excitations in disordered ferromagnetic backgrounds. Applications to diluted chains and percolation clusters are discussed. It is found that density fluctuations in the former exhibit a stretched exponential decay while an anomalous power law asymptotic decay is conjectured for the latter.  相似文献   

13.
The low density form of the generalized frequency (s) and wavevector (k) dependent self-diffusion coefficient D(k, s) is calculated, from which the low density forms of related quantities, e.g. the velocity autocorrelation function, are derived. Agreement is obtained with the low density kinetic theory results. A closed form expression for D(k, s) valid over a wide range of densities and times is also given, showing consistency between the asymptotic long time results, obtained previously, and the low density kinetic theory results.  相似文献   

14.
We study dielectric critical behaviour around a continuous metal-insulator transition in crystalline Cesium Iodide induced by changing the lattice parameter. The ab initio calculations of band structure and various quantities related to the dielectric response are performed in the transition region, within the local density approximation of the density functional theory. These calculations allow us to establish the power-law singularities of various quantities on two sides of the transition. The exponents obtained here are mean-field like due to the approximation in which interactions and disorder are treated. The critical behaviour is discussed by applying the scaling principle to the wavevector and frequency dependent dielectric function. We further investigate the effect of dielectric anomalies on optical properties by calculating the reflectance around transition region taking the ionic contribution to the dielectric function also into account. We find that the reflectance as a function of frequency shows very different kind of behaviour on both sides of the metal-insulator transition.  相似文献   

15.
We present in this work a numerical study of the dynamics of ensembles of point particles within a polygonal billiard chain. This billiard is a system with no exponential instability. Our numerical results suggest that some members of the family exhibit normal diffusive behavior while others present anomalous diffusion. Our conclusions are drawn from the numerical evaluation of the mean square displacement, the velocity autocorrelation function and its spectral analysis. Furthermore we analyze the properties of the incoherent scattering function. The super Burnett coefficient seems to be ill defined in all systems. The multifractal analysis of the spectrum of the velocity autocorrelation functions is also reported. Finally, we study the heat conduction in our polygonal chain.  相似文献   

16.
We develop the kinetic theory of point vortices in two-dimensional hydrodynamics and illustrate the main results of the theory with numerical simulations. We first consider the evolution of the system “as a whole” and show that the evolution of the vorticity profile is due to resonances between different orbits of the point vortices. The evolution stops when the profile of angular velocity becomes monotonic even if the system has not reached the statistical equilibrium state (Boltzmann distribution). In that case, the system remains blocked in a quasi stationary state with a non standard distribution. We also study the relaxation of a test vortex in a steady bath of field vortices. The relaxation of the test vortex is described by a Fokker-Planck equation involving a diffusion term and a drift term. The diffusion coefficient, which is proportional to the density of field vortices and inversely proportional to the shear, usually decreases rapidly with the distance. The drift is proportional to the gradient of the density profile of the field vortices and is connected to the diffusion coefficient by a generalized Einstein relation. We study the evolution of the tail of the distribution function of the test vortex and show that it has a front structure. We also study how the temporal auto-correlation function of the position of the test vortex decreases with time and find that it usually exhibits an algebraic behavior with an exponent that we compute analytically. We mention analogies with other systems with long-range interactions.  相似文献   

17.
Brownian motion of the particles with repulsive interaction is investigated. When the potential condition is satisfied, the eigenvalue problem of interaction Fokker-Planck equation under certain conditions can be transformed to that of a many-particle Schrödinger equation. Using the Green's function method, we obtain the effective single-variable Fokker-Planck equation in the low density limit. We find that the diffusion of coupled Brownian particles in quenched disorder media is also anomalous in 2D. The Mittag-Leffler relaxation of pancake vortices is investigated by fractional Fokker-Planck equation.  相似文献   

18.
We show how the ideas of the fluctuation-dissipation theory can be used to calculate spatial correlations in interacting systems away from equilibrium. The only spatially dependent dissipative process considered is diffusion, and spatial correlations are generated by the nonlocal spatial dependence of the chemical potential. The results are the lowest order in a hierarchy of generalized hydrodynamic type calculations applicable to nonequilibrium systems. We derive equations for the density correlation functions at stationary state supported by diffusive fluxes and show that they have the local equilibrium form. The static correlation function is obtained from the fluctuation-dissipation theorem, which we show to be equivalent to the Ornstein-Zernike integral equation. At equilibrium we demonstrate that the dynamical structure factor obtained by these methods includes the expected wave-vector dependent diffusion constant. Finally we derive a necessary and sufficient condition for local equilibrium to obtain at a stationary state and show by explicit calculation that chemical processes can give rise to significant nonequilibrium correlations.  相似文献   

19.
20.
吴肖令 《波谱学杂志》1986,3(3):229-234
Nechtschein等人报道并分析了反式聚乙炔中质子自旋晶格弛豫时间对拉摩频率ω和温度T的依赖关系。观察到了质子自旋晶格弛豫速率T1-1ω-1/2的正比关系。但是在高频段,T1-1ω-1/2关系发生偏离,且温度越低,发生偏离的频率也越低。 本文用另一种方法对这些实验结果作了分析。首先,论证了孤子一维扩散模型的合理性。排除了质子弛豫速率∝ω-1/2的另一种解释,即仅仅是核自旋向着静止的顺磁中心扩散。孤子能处在运动状态或静止状态。当温度降低时,发生两个效应,即越来越少的孤子处于运动状态,且运动孤子的扩散系数减小。只有扩散的孤子对所观察到的质子弛豫有贡献,而固定孤子的贡献可以忽略。其次,描述了运动孤子的一维随机行走模型,计算了它的相关函数和谱密度函数。质子自旋晶格弛豫速率是: 其中C是运动孤子的浓度,τ是运动孤子沿链跳跃时,渡越相邻位置的跳跃时间,ω是质子的拉摩频率。 这个公式揭示了质子弛豫速率的频率和温度依赖关系的主要特征。它和Nechtschein的测量结果拟合得很好。从拟合中可以得到各个温度下运动孤子的跳跃时间和相对浓度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号