首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider an external gauge potential minimally coupled to a renormalisable scalar theory on 4-dimensional Moyal space and compute in position space the one-loop Yang–Mills-type effective theory generated from the integration over the scalar field. We find that the gauge-invariant effective action involves, beyond the expected noncommutative version of the pure Yang–Mills action, additional terms that may be interpreted as the gauge theory counterpart of the harmonic oscillator term, which for the noncommutative ϕ4-theory on Moyal space ensures renormalisability. The expression of a possible candidate for a renormalisable action for a gauge theory defined on Moyal space is conjectured and discussed.  相似文献   

2.
We intend to illustrate how the methods of noncommutative geometry are currently used to tackle problems in class field theory. Noncommutative geometry enables one to think geometrically in situations in which the classical notion of space formed of points is no longer adequate, and thus a “noncommutative space” is needed; a full account of this approach is given in [3] by its main contributor, Alain Connes. The class field theory, i.e., number theory within the realm of Galois theory, is undoubtedly one of the main achievements in arithmetics, leading to an important algebraic machinery; for a modern overview, see [23]. The relationship between noncommutative geometry and number theory is one of the many themes treated in [22, 7–9, 11], a small part of which we will try to put in a more down-to-earth perspective, illustrating through an example what should be called an “application of physics to mathematics,” and our only purpose is to introduce nonspecialists to this beautiful area.  相似文献   

3.
We elaborate on the dynamics of noncommutative two-dimensional gauge field theories. We consider U(N) gauge theories with fermions in either the fundamental or the adjoint representation. Noncommutativity leads to a rather non-trivial dependence on theta (the noncommutativity parameter) and to a rich dynamics. In particular the mass spectrum of the noncommutative U(1) theory with adjoint matter is similar to that of ordinary (commutative) two-dimensional large-NSU(N) gauge theory with adjoint matter. The noncommutative version of the ?t Hooft model receives a non-trivial contribution to the vacuum polarization starting from three-loops order. As a result the mass spectrum of the noncommutative theory is expected to be different from that of the commutative theory.  相似文献   

4.
We show that arising out of noncommutative geometry is a natural family of edge Laplacians on the edges of a graph. The family includes a canonical edge Laplacian associated to the graph, extending the usual graph Laplacian on vertices, and we find its spectrum. We show that for a connected graph its eigenvalues are strictly positive aside from one mandatory zero mode, and include all the vertex degrees. Our edge Laplacian is not the graph Laplacian on the line graph but rather it arises as the noncommutative Laplace-Beltrami operator on differential 1-forms, where we use the language of differential algebras to functorially interpret a graph as providing a ‘finite manifold structure’ on the set of vertices. We equip any graph with a canonical ‘Euclidean metric’ and a canonical bimodule connection, and in the case of a Cayley graph we construct a metric compatible connection for the Euclidean metric. We make use of results on bimodule connections on inner calculi on algebras, which we prove, including a general relation between zero curvature and the braid relations.  相似文献   

5.
6.
7.
8.
9.
A version of noncommutative geometry is proposed which is based on phase-space rather than position space. The momenta encode the information contained in the algebra of forms by a map which is the noncommutative extension of the duality between the tangent bundle and the cotangent bundle.  相似文献   

10.
Recently Verlinde proposed that gravity can be described as an emergent phenomena arising from changes in the information associated with the positions of material bodies. By using noncommutative geometry as a way to describe the microscopic microstructure of quantum spacetime, we derive modified Friedmann equation in this setup and study the entropic force modifications to the inflationary dynamics of early universe.  相似文献   

11.
We discuss some group theoretical properties of Yang-Mills theories. We consider conditions necessary and sufficient to decide if the gauge field is reducible and prove some related theorems. We give criteria for embeddings and work out the case of SU (3) explicitly.  相似文献   

12.
We present a noncommutative (NC) version of the action for vielbein gravity coupled to gauge fields. Noncommutativity is encoded in a twisted $\star $ -product between forms, with a set of commuting background vector fields defining the (abelian) twist. A first order action for the gauge fields avoids the use of the Hodge dual. The NC action is invariant under diffeomorphisms and $\star $ -gauge transformations. The Seiberg–Witten map, adapted to our geometric setting and generalized for an arbitrary abelian twist, allows to re-express the NC action in terms of classical fields: the result is a deformed action, invariant under diffeomorphisms and usual gauge transformations. This deformed action is a particular higher derivative extension of the Einstein-Hilbert action coupled to Yang-Mills fields, and to the background vector fields defining the twist. Here noncommutativity of the original NC action dictates the precise form of this extension. We explicitly compute the first order correction in the NC parameter of the deformed action, and find that it is proportional to cubic products of the gauge field strength and to the symmetric anomaly tensor $D_{IJK}$ .  相似文献   

13.
14.
We describe fivebrane configurations in M theory whose 4-d spacetime contains N = 1 supersymmetric Sp or SO gauge fields and fundamentals of these groups. We show how field-theory dualities for Sp and SO groups can be derived using these fivebrane configurations in M theory.  相似文献   

15.
16.
17.
We complete the construction of the gauge theory on discrete groups coupled to fermions in the spirit of non-commutative geometry. We show that a simple Higgs field is such a gauge field with respect toZ 2-gauge symmetry overM 4 and the Yukawa coupling between Higgs and fermions is automatically introduced via minimum coupling principle. TheZ 2-symmetry is taken to be ={e, r=(CPT) 2}, a sub-symmetry of the CPT transformations. The Weinberg-Salam model for the electroweak interaction as well as the Standard Model for the electroweak-strong interaction are reformulated in detail.Work supported in part by The National Natural Science Foundation Of China  相似文献   

18.
19.
We build a toy model of differential geometry on the real line, which includes derivatives of the second order. Such construction is possible only within the framework of noncommutative geometry. We introduce the metric and briefly discuss two simple physical models of scalar field theory and gauge theory in this geometry.Partially supported by KBN grant 2 P302 168 4.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号