首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The mechanism of vaporization and atomization of U in a graphite tube electrothermal vaporizer was studied using graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Graphite furnace AAS studies indicate U atoms are formed at temperatures above 2400°C. Using ETV-ICP-MS, an appearance temperature of 1100°C was obtained indicating that some U vaporizes as U oxide. Although U carbides form at temperatures above 2000°C, ETV-ICP-MS studies show that they do not vaporize until 2600°C. In the temperature range between 2200°C and 2600°C, U atoms in GFAAS are likely formed by thermal dissociation of U oxide, whereas at higher temperatures, U atoms are formed via thermal dissociation of U carbide.The origin of U signal suppression in ETV-ICP-MS by NaCl was also investigated. At temperatures above 2000°C, signal suppression may be caused by the accelerated rate of formation of carbide species while at temperatures below 2000°C, the presence of NaCl may cause intercalation of the U in the graphite layers resulting in partial retention of U during the vaporization step. The use of 0.3% freon-23 (CHF3) mixed with the argon carrier gas was effective in preventing the intercalation of U in graphite and U carbide formation at 2700°C.  相似文献   

2.
The mechanisms by which the platinum group elements (PGEs) are vaporized in the graphite furnace have been investigated using electrothermal vaporization-inductively coupled plasma-mass spectrometry (ETV-ICP-MS). The results suggest that live of these elements (Ru, Rh, Pd, Ir and Pt) are reduced to their metallic state in the graphite furnace and then vaporized by direct sublimation of the metal. For Os, the vaporization mechanism is different. In the presence of HNO3, two distinct vaporization processes are observed. Volatile oxides of Os are released at low temperatures, but some of this oxide is reduced to relatively involatile Os metal which is then vaporized when the temperature is increased above 2000°C. The addition of TeCl2 chemical modifier was found to have minimal effect on the vaporization mechanism and sensitivity for determination for five of the PGEs. For Os, however, the analytical sensitivity and limit of detection was improved when Te modifier was used in conjunction with a lower vaporization temperature of 1400°C. Optimum conditions for the determination of the PGEs by ETV-ICP-MS are reported, along with their absolute limits of detection; these range from 0.015 pg for Ir to 0.25 pg for Os.  相似文献   

3.
Pyrolysis curves in electrothermal atomic absorption spectrometry (ET AAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) have been compared for As, Se and Pb in lobster hepatopancreas certified reference material using Pd/Mg as the modifier. The ET AAS pyrolysis curves confirm that the analytes are not lost from the graphite furnace up to a pyrolysis temperature of 800 °C. Nevertheless, a downward slope of the pyrolysis curve was observed for these elements in the biological material using ETV-ICP-MS. This could be related to a gain of sensitivity at low pyrolysis temperatures due to the matrix, which can act as carrier and/or promote changes in the plasma ionization equilibrium. Experiments with the addition of ascorbic acid to the aqueous standards confirmed that the higher intensities obtained in ETV-ICP-MS are related to the presence of organic compounds in the slurry. Pyrolysis curves for As, Se and Pb in coal and coal fly ash were also investigated using the same Pd/Mg modifier. Carbon intensities were measured in all samples using different pyrolysis temperatures. It was observed that pyrolysis curves for the three analytes in all slurry samples were similar to the corresponding graphs that show the carbon intensity for the same slurries for pyrolysis temperatures from 200 °C up to 1000 °C.  相似文献   

4.
Reported are results for the quantitative determination of absolute transport efficiency in electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the Perkin-Elmer HGA-600MS electrothermal vaporizer. The absolute transport efficiencies for Mo, In, Tl and Bi were determined using experimental conditions typical of those applied to real analysis by ETV-ICP-MS. Experiments using an on-line filter trapping apparatus indicated that particles produced by the ETV device were smaller than 0.1 μm in diameter. The nature and condition of the ETV graphite surface, the length of the transfer tube, and the effect that diluted seawater and palladium modifiers have on analyte transport efficiency were investigated. Transport efficiency was comparable for all elements studied and was enhanced with previously used, rather than new, graphite tubes and when seawater and palladium carriers were present. When analyte was vaporized without carrier from a new graphite tube, the transport efficiency to the plasma was approximately 10%. Approximately 70% of the total amount of analyte vaporized was deposited within the ETV switching valve, 19% onto the transfer tubing and 1% onto the components comprising the torch assembly. These conditions represent the `worst case scenario', with analyte transport to the plasma increasing to approximately 20% or more with the addition of carrier.  相似文献   

5.
Electrothermal vaporization (ETV) inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) with polyvinylidene fluoride (PVDF) as chemical modifier are critically compared for the determination of refractory elements in coal fly ash and airborne particulates. The atmospheric particulates that collected on a PVDF filter were introduced into the graphite furnace in the form of a slurry by dissolving the filter in dimethylformamide, and the dissolved filter PVDF, along with additional added PVDF powder, was used as a chemical modifier for subsequent ETV-ICP-OES and ETV-ICP-MS determination. The vaporization behaviors of analytes (Ti, Zr, V, Mo, Cr, La) in ETV-ICP-OES/MS were studied in detail, and the optimal ETV operating parameters were obtained. Under the optimized operating conditions, the detection limits of target elements were 0.08-2.7 ng m(-3) for ETV-ICP-OES and 0.5-50 pg m(-3) for ETV-ICP-MS, respectively, with analytical precisions of 3.5-7.3% for ETV-ICP-OES and 3.9-9.6% for ETV-ICP-MS, respectively. The tolerable amounts of matrix elements for ETV-ICP-OES are higher than for ETV-ICP-MS. Both ETV-ICP-OES and ETV-ICP-MS were used to directly determine the trace refractory elements in coal fly ash and airborne particulates and the analytical results are comparable.  相似文献   

6.
The operational parameters of the graphite furnace for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS), i.e. the internal carrier gas flow rate, the total carrier gas flow rate, the sample pretreatment temperature and the volatilization temperature, are optimized for oligoelement determinations (75As, 9Be, 112Cd, 50Cr, 65Cu, 103Rh, 123Sb). The volatilization temperatures of As and Cr are compared to those obtained by graphite furnace atomic absorption spectrometry (GFAAS). Several modifiers Mg(NO3)2, Pd(NO3)2, Mg(NO3)2/Pd(NO3)2, Ni(NO3)2, KI, (NH4)H2PO4 have been tested using the concentrations recommended for GFAAS. The concentration of Mg(NO3)2 alone and in combination with NaCl has been varied to find the optimal modifier conditions. ETV-ICP-MS signal enhancements by a factor of 10 to 130 respective to those of conventional nebulization have been obtained. The optimized parameters are evaluated by analyzing the water standard reference NIST 1643c and the aqua regia solution of the lake sediment reference material BCR 280.  相似文献   

7.
The operational parameters of the graphite furnace for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS), i.e. the internal carrier gas flow rate, the total carrier gas flow rate, the sample pretreatment temperature and the volatilization temperature, are optimized for oligoelement determinations (75As, 9Be, 112Cd, 50Cr, 65Cu, 103Rh, 123Sb). The volatilization temperatures of As and Cr are compared to those obtained by graphite furnace atomic absorption spectrometry (GFAAS). Several modifiers Mg(NO3)2, Pd(NO3)2, Mg(NO3)2/Pd(NO3)2, Ni(NO3)2, KI, (NH4)H2PO4 have been tested using the concentrations recommended for GFAAS. The concentration of Mg(NO3)2 alone and in combination with NaCl has been varied to find the optimal modifier conditions. ETV-ICP-MS signal enhancements by a factor of 10 to 130 respective to those of conventional nebulization have been obtained. The optimized parameters are evaluated by analyzing the water standard reference NIST 1643c and the aqua regia solution of the lake sediment reference material BCR 280.  相似文献   

8.
In tungsten furnace electrothermal vaporization(ETV)-inductively coupled plasma mass spectrometry(ICP-MS), the presence of halogen matrices caused a signal enhancement for volatile elements such as Zn, Cd and Pb, whose halides melting and boiling points were relatively low. In order to clarify the mechanism of signal enhancement in ETV-ICP-MS, the effects of chemical interaction between analytes and halogen matrices on the surface of ETV furnace, the transport efficiency of vaporized analytes from the furnace into the ICP and the physical properties of the ICP itself and of the micro plasma (interface plasma) in the interface region between the sampling and the skimmer cones were investigated by atomic absorption and atomic emission spectrometry. Among the effects mentioned above, neither the chemical interaction on the surface of the ETV furnace nor the transport efficiency of vaporized analytes could be related to the analyte signal enhancements. The degree of enhancement was found to depend on the ionization potential of the coexisting halogen and was not caused by a variation in the physical properties of the ICP but rather by a variation of those of the interface plasma. These results suggest that the halogen matrices may affect the physical properties of the interface plasma, contributing to the promotion of the ionization of analytes.  相似文献   

9.
Yang LL  Zhang DQ 《Talanta》2002,56(6):12-1129
A method has been described for the direct determination of trace levels of germanium by graphite furnace atomic absorption spectrometry (GFAAS) using chemical matrix modification technique. The stabilization and the pyrolysis temperatures for germanium were investigated with various chemical modifiers including palladium, palladium–magnesium, palladium–strontium and palladium–zirconium. The highest pyrolysis temperature and highest integrated absorbance were obtained using palladium–zirconium modifier, and the severe matrix interference from sulfate can be eliminated. The characteristic mass and absolute detection limit (3σ) of germanium were found to be 16 and 12 pg, respectively. The proposed method was applied to the determination of trace levels of germanium in botanical samples with a recovery range of 92–106%. The hydride generation atomic fluorescence spectrometric (HGAFS) method was employed to analyze the samples and the results agree well with those obtained by GFAAS. The contents of germanium in standard reference materials were determined and the results were in good agreement with the reference values.  相似文献   

10.
The sample is vaporized from tungsten filament coils (150 W) and transported by an argon stream to the cell of a modified hydride furnace for atomic absorption spectrometry (a.a.s.). The system provides almost the same sensitivity for elements with low appearance temperatures (e.g., Bi, Cd, Pb, Tl, Zn) as graphite-furnace a.a.s. The detection limits are between 0.1 and 5 ng ml?1, depending on the element.  相似文献   

11.
Uptake of trace elements into fish otoliths is governed by several factors such as life histories and environment in addition to stock and species differences. In an attempt to elucidate the elemental signatures of rare earth elements (REEs) in otoliths, a solid phase extraction (SPE) protocol was used in combination with electrothermal vaporization (ETV) as a sample introduction procedure for the determinations by inductively coupled plasma quadrupole mass spectrometry (ICP-MS). Effects of various parameters, such as carrier gas flow rate, atomization temperature and chemical modification, were examined for optimization of the conditions by ETV-ICP-MS. Atomization was achieved at 2800 °C. Lower temperatures (i.e. 2600 °C) resulted in severe memory problems due to incomplete atomization. Palladium was used as a chemical modifier. It was found that an increase in Pd concentration up to 0.5 μg in the injection volume (70 μl) led up to four-fold enhancement in the integrated signals. This phenomenon is attributed to the carrier effect of Pd rather than the stabilization since no significant losses were observed for high temperature drying around 700 °C even in the absence of Pd. Preconcentration was performed on-line at pH 5 by using a mini-column of Toyopearl AF-Chelate 650M chelating resin, which also eliminated the calcium matrix of otolith solutions. After preconcentration of 6.4 ml of solution, the concentrate was collected in 0.65 ml of 0.5% (v/v) HNO3 in autosampler cups, and then analyzed by ETV-ICP-MS. The method was validated with the analysis of a fish otolith certified reference material (CRM) of emperor snapper, and then applied to samples. Results obtained from otoliths of fish captured in the same habitat indicated that otolith rare earth element concentrations are more dependent on environmental conditions of the habitat than on species differences.  相似文献   

12.
Solid sampling (SS) graphite furnace atomic absorption spectrometry (GFAAS) and solution-based (SB) methods of GFAAS, flame atomic absorption spectrometry (FAAS), inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were elaborated and/or optimized for the determination of Cr, Fe and Mn trace elements used as dopants in lithium niobate optical crystals.  相似文献   

13.
Platform and wall vaporization for electrothermal vaporization (ETV)-inductively coupled plasma mass spectrometry (ICP-MS) determination of some refractory elements (Ti, V, Cr, Mo, La and Zr) and Pb were comparatively studied with the use of poly (tetrafluoroethylene) (PTFE) as fluorinating reagent. The factors affecting the vaporization behaviors of the target analytes in the platform and tube wall vaporization including vaporization temperature and time, pyrolytic temperature and time were studied in detail, and the flow rates of carrier gas/auxiliary carrier gas, were carefully optimized. Under the optimal conditions, the signal profiles, signal intensity, interferences of coexisting ions and analytical reproducibility for wall and platform vaporization ETV-ICP-MS were compared. It was found that both wall and platform vaporization could give very similar detection limits, but the platform vaporization provided higher signal intensity and better precision for some refractory elements and Pb than the wall vaporization. Especially for La, the signal intensity obtained by platform vaporization was 3 times higher than that obtained by wall vaporization. For platform vaporization ETV-ICP-MS, the limits of detection (LODs) of 0.001 μg L−1 (La) ~ 0.09 μg L− 1 (Ti) with the relative standard deviations (RSDs) of 1.5% (Pb) ~ 15.5% (Zr) were obtained. While for wall vaporization ETV-ICP-MS, LODs of 0.005 μg L− 1 (La) ~ 0.4 μg L− 1 (Pb) with RSDs of 3.2% (Mo) ~ 12.8% (Zr) were obtained. Both platform and tube wall vaporization techniques have been used for slurry sampling fluorination assisted ETV-ICP-MS direct determination of Ti, V, Cr, Mo, La, Zr and Pb in certified reference materials of NIES No. 8 vehicle exhaust particulates and GBW07401 soil, and the analytical results obtained are in good agreement with the certified values.  相似文献   

14.
A novel method of online microcolumn separation and preconcentration coupled to inductively coupled plasma atomic emission spectrometry (ICP-AES) with the use of acetylacetone-modified silica gel as packing material was developed for the determination of trace rare earth elements (REEs) in environmental and food samples. The main parameters affecting online separation/preconcentration, including pH, sample flow rate, sample volume, elution and interfering ions, have been investigated in detail. Under the optimized operating conditions, the adsorption capacity values for Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu were 25.65, 23.23, 24.01, 19.40, 22.89, 23.77, 24.40, 23.96, 25.58, 25.15, 24.86, 22.75, 16.05, 24.13, 26.51 and 27.93 mg g(-1), respectively. Detection limits (3sigma) based on three times standard deviations of the blanks by 8 replicates were in the range from 48 pg mL(-1) for Lu to 1003 pg mL(-1) for Sm. With 90 s preconcentration time and 10 s elution time, the enrichment factor was 10 and the sample frequency was 28 h(-1). The precisions (RSDs) obtained by determination of a 250 ng mL(-1) (n = 8) REEs standard solution were in the range from 1.7% for Y to 4.4% for Sm. The proposed method was successfully applied to the determination of trace REEs in pig liver, agaric and mushroom. To validate the proposed method, we analyzed three certified reference materials (GBW07401 soil, GBW07301a sediment, and GBW07605 tea leaves). The determined values were in a good agreement with the certified values. The method is rapid, selective, sensitive and applicable to the determination of trace REEs in biological and environmental samples with complicated matrix effects.  相似文献   

15.
The role of modifiers in electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the determination of refractory elements such as La or U and carbide forming elements such as B has been studied. Solutions of NH4F, NH4Cl, NH4Br, NaCl, NaF, NH4HSO4, (NH4)2HPO4, the gaseous halogenated hydrocarbons CHF3 and CCl2F2 and HCl have been used as modifiers.The mechanism of the modifier effect and the influence of modifiers on sensitivity enhancement have been investigated. The sensitivity enhancements are great enough to achieve absolute detection limits of 2–6 pg for boron and 10 fg for La and U. The signal reproducibility is 0.5–3.0% for a concentration of 1 μg 1−1 La and U, and 20 μg 1−1 boron. Therefore, by adding modifiers, the use of ETV-ICP-MS can be extended to trace element determination of refractory and carbide forming elements in μl amounts of sample.  相似文献   

16.
Laser excited atomic fluorescence spectrometry combined with electrothermal atomization (ETA-LEAFS) and inductively coupled plasma mass spectrometry combined with electrothermal evaporation (ETV-ICP-MS) were used to measure the concentrations of some metals in ambient air sampled at the outskirts of Berlin. Using graphite to collect airborne particulates the contents of lead, palladium, and thallium could be determined in the pg/m(3) range.  相似文献   

17.
Hirata S  Kajiya T  Aihara M  Honda K  Shikino O 《Talanta》2002,58(6):1185-1194
A home made column of commercially available iminodiacetate resin, Muromac A-1 (50–100 mesh) was used to concentrate rare earth elements (REEs) (15 elements: Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in seawater. An automated low pressure flow analysis method with on-line column preconcentration/inductively coupled plasma mass spectrometry (ICP-MS) is described for the determination of REEs in seawater. Sample solutions (adjusted to pH of 3.0) passed through the column. After washing the column with water, the adsorbed elements were subsequently eluted into the plasma with 0.7 M nitric acid. Calibration curves were accomplished by means of purified artificial seawater with a sample loading time of 120 s. Detection limits (DLs) of the on-line column preconcentration/ICP-MS by eight replicate operations were between 0.040 and 0.251 pg ml−1 for REEs in the artificial seawater. The precision was less than 8.9% for REEs and one sample can be processed in 7 min using a 7 ml of sample. The proposed method was applied to determine REEs in coastal seawater of Hiroshima Bay, Japan.  相似文献   

18.
Atomic fluorescence spectrometry (AFS) minimizes spectral overlap interference, often occurring in atomic emission spectrometry especially for such elements as rare earth elements (REEs). It has broader linear dynamic range than atomic absorption spectrometry, and is potentially a multi-element technique.  相似文献   

19.
Summary A liquid membrane emulsion was developed for the simultaneous extraction and preconcentration of traces of Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn in potable liquids. After preconcentration, the eight elements were determined by flame atomic absorption spectrometry (FAAS). The results of analyses of potable water, beer and soft drinks, each from five or six different sources are listed. Data from the preconcentration method were compared with corresponding data obtained from the direct determination of the elements by graphite furnace atomic absorption spectrometry (GFAAS). Differences in results for trace elements between the liquid membrane emulsion-FAAS method and the GFAAS method were in the ranges of ±10% (water), ±9% (beer) and ±14% (soft drinks) for most of the trace elements. The satisfactory agreement meant that analyses of such liquids for trace elements can be carried out accurately with less expensive and widely available FAAS equipment.  相似文献   

20.
Laser excited atomic fluorescence spectrometry combined with electrothermal atomization (ETA-LEAFS) and inductively coupled plasma mass spectrometry combined with electrothermal evaporation (ETV-ICP-MS) were used to measure the concentrations of some metals in ambient air sampled at the outskirts of Berlin. Using graphite to collect airborne particulates the contents of lead, palladium, and thallium could be determined in the pg/m3 range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号