首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical conversion of nitrate pollutants into value-added ammonia is a feasible way to achieve artificial nitrogen cycle. However, the development of electrocatalytic nitrate-to-ammonia reduction reaction (NO3RR) has been hampered by high overpotential and low Faradaic efficiency. Here we develop an iron single-atom catalyst coordinated with nitrogen and phosphorus on hollow carbon polyhedron (denoted as Fe−N/P−C) as a NO3RR electrocatalyst. Owing to the tuning effect of phosphorus atoms on breaking local charge symmetry of the single-Fe-atom catalyst, it facilitates the adsorption of nitrate ions and enrichment of some key reaction intermediates during the NO3RR process. The Fe−N/P−C catalyst exhibits 90.3 % ammonia Faradaic efficiency with a yield rate of 17980 μg h−1 mgcat−1, greatly outperforming the reported Fe-based catalysts. Furthermore, operando SR-FTIR spectroscopy measurements reveal the reaction pathway based on key intermediates observed under different applied potentials and reaction durations. Density functional theory calculations demonstrate that the optimized free energy of NO3RR intermediates is ascribed to the asymmetric atomic interface configuration, which achieves the optimal electron density distribution. This work demonstrates the critical role of atomic-level precision modulation by heteroatom doping for the NO3RR, providing an effective strategy for improving the catalytic performance of single atom catalysts in different electrochemical reactions.  相似文献   

2.
Reactions of the BH4 anion with equimolar amounts of HN(NO2)2 or of BH3⋅THF with K[N(NO2)2] produced a mono‐substituted [BH3N(NO2)2] anion, which contains a B−N connected dinitramido ligand. The reaction of BH4 with two equivalents of HN(NO2)2 afforded the di‐substituted borate anion consisting of two isomers, one with both nitramido ligands attached to B through N and the other one with one ligand attached through N and the other one through O. The disubstituted dinitramidoborates are marginally stable under ambient conditions, and the isomer with two N‐connected ligands was characterized by its crystal structure. A tri‐substituted borate was tentatively identified by NMR in the reaction of BH4 with a large excess of HN(NO2)2. All of the anions are highly energetic. Theoretical calculations show that the energy differences between the B−N and B−O tautomers are small, explaining the formation of both.  相似文献   

3.
The electrocatalytic nitrate reduction reaction (NO3RR) enables the reduction of nitrate to ammonium ions under ambient conditions. It was considered as an alternative reaction for the production of ammonia (NH3) in recent years. In this paper, we report that the Fe doping CoS2 nanoarrays can effectively catalyze the formation of NH3 from nitrate (NO3) under ambient conditions. This is mainly due to the increase of the NO3 reaction active site by Fe doping and the porous nanostructure of the catalyst, which greatly improves the catalytic activity. Specifically, at −0.9 V vs. RHE, the NH3 yield rate (RNH3) of Fe−CoS2/CC is 17.8×10−2 mmol h−1 cm−2 with Faraday Efficiency (FE) of 88.93 %. Besides, such catalyst shows good durability and catalytic stability, which provides the possibility for the future application of electrocatalytic NH3 production.  相似文献   

4.
The development of efficient electrocatalysts to generate key *NH2 and *CO intermediates is crucial for ambient urea electrosynthesis with nitrate (NO3) and carbon dioxide (CO2). Here we report a liquid-phase laser irradiation method to fabricate symbiotic graphitic carbon encapsulated amorphous iron and iron oxide nanoparticles on carbon nanotubes (Fe(a)@C-Fe3O4/CNTs). Fe(a)@C-Fe3O4/CNTs exhibits superior electrocatalytic activity toward urea synthesis using NO3 and CO2, affording a urea yield of 1341.3±112.6 μg h−1 mgcat−1 and a faradic efficiency of 16.5±6.1 % at ambient conditions. Both experimental and theoretical results indicate that the formed Fe(a)@C and Fe3O4 on CNTs provide dual active sites for the adsorption and activation of NO3 and CO2, thus generating key *NH2 and *CO intermediates with lower energy barriers for urea formation. This work would be helpful for design and development of high-efficiency dual-site electrocatalysts for ambient urea synthesis.  相似文献   

5.
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.  相似文献   

6.
Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. We designed a Z-Scheme photocatalyst with N−Cu1−S single-atom electron bridge (denoted as Cu-SAEB), which was used to mediate the CO2RR. The production of CO and O2 over Cu-SAEB is as high as 236.0 and 120.1 μmol g−1 h−1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as-designed Cu-SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu-SAEB, and mediated by the N−Cu1−S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z-scheme interfacial charge-transport process, thus leading to great enhancement of the photocatalytic CO2RR of Cu-SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.  相似文献   

7.
As a potential substitute technique for conventional nitrate production, electrocatalytic nitrogen oxidation reaction (NOR) is gaining more and more attention. But, the pathway of this reaction is still unknown owing to the lack of understanding on key reaction intermediates. Herein, electrochemical in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and isotope-labeled online differential electrochemical mass spectrometry (DEMS) are employed to study the NOR mechanism over a Rh catalyst. Based on the detected asymmetric NO2 bending, NO3 vibration, N=O stretching, and N−N stretching as well as isotope-labeled mass signals of N2O and NO, it can be deduced that the NOR undergoes an associative mechanism (distal approach) and the strong N≡N bond in N2 prefers to break concurrently with the hydroxyl addition in distal N.  相似文献   

8.
The reaction of precursors containing both nitrogen and oxygen atoms with NiII under 500 °C can generate a N/O mixing coordinated Ni-N3O single-atom catalyst (SAC) in which the oxygen atom can be gradually removed under high temperature due to the weaker Ni−O interaction, resulting in a vacancy-defect Ni-N3-V SAC at Ni site under 800 °C. For the reaction of NiII with the precursor simply containing nitrogen atoms, only a no-vacancy-defect Ni-N4 SAC was obtained. Experimental and DFT calculations reveal that the presence of a vacancy-defect in Ni-N3-V SAC can dramatically boost the electrocatalytic activity for CO2 reduction, with extremely high CO2 reduction current density of 65 mA cm−2 and high Faradaic efficiency over 90 % at −0.9 V vs. RHE, as well as a record high turnover frequency of 1.35×105 h−1, much higher than those of Ni-N4 SAC, and being one of the best reported electrocatalysts for CO2-to-CO conversion to date.  相似文献   

9.
Transition-metal catalyzed coupling to form C−N bonds is significant in chemical science. However, the inert nature of N2 and CO2 renders their coupling quite challenging. Herein, we report the activation of dinitrogen in the mild plasma atmosphere by the gas-phase monometallic YB1–4 anions and further coupling of CO2 to form C−N bonds by using mass spectrometry and theoretical calculation. The observed product anions are NCNBO and N(BO)2, accompanied by the formation of neutral products YO and YB0–2NC, respectively. We can tune the reactivity and the type of products by manipulating the number of B atoms. The B atoms in YB1–4N2 act as electron donors in CO2 reduction reactions, and the carbon atom originating from CO2 serves as an electron reservoir. This is the first example of gas-phase monometallic anions, which are capable to realize the functionalization of N2 with CO2 through C−N bond formation and N−N and C−O bond cleavage.  相似文献   

10.
Solar-to-chemical energy conversion under weak solar irradiation is generally difficult to meet the heat demand of CO2 reduction. Herein, a new concentrated solar-driven photothermal system coupling a dual-metal single-atom catalyst (DSAC) with adjacent Ni−N4 and Fe−N4 pair sites is designed for boosting gas-solid CO2 reduction with H2O under simulated solar irradiation, even under ambient sunlight. As expected, the (Ni, Fe)−N−C DSAC exhibits a superior photothermal catalytic performance for CO2 reduction to CO (86.16 μmol g−1 h−1), CH4 (135.35 μmol g−1 h−1) and CH3OH (59.81 μmol g−1 h−1), which are equivalent to 1.70-fold, 1.27-fold and 1.23-fold higher than those of the Fe−N−C catalyst, respectively. Based on theoretical simulations, the Fermi level and d-band center of Fe atom is efficiently regulated in non-interacting Ni and Fe dual-atom pair sites with electronic interaction through electron orbital hybridization on (Ni, Fe)−N−C DSAC. Crucially, the distance between adjacent Ni and Fe atoms of the Ni−N−N−Fe configuration means that the additional Ni atom as a new active site contributes to the main *COOH and *HCO3 dissociation to optimize the corresponding energy barriers in the reaction process, leading to specific dual reaction pathways (COOH and HCO3 pathways) for solar-driven photothermal CO2 reduction to initial CO production.  相似文献   

11.
The present study demonstrates the indirect electrocatalytic synthesis of isonicotinic acid using a Ni complex, [NiII(Me4-(NO2Bzo)2[14]tetraeneN4)], in an acetonitrile solution at room temperature. The complex was used as an excellent electrocatalyst for the reduction of carbon dioxide. The results indicate that the electrocatalytic reduction product of CO2 (CO2) has a dual role in the electrosynthesis of isonicotinic acid. The dual activity of CO2 involved indirect electrocatalytic reduction of pyridine as well as its radical reaction with pyridine radical anion to form isonicotinic acid. Finally, EC′C′C mechanism was proposed for the synthesis of isonicotinic acid. In contrast, the reaction of pyridine with CO2 in the absence of the complex follows an EC′C mechanism, and the final product is 4,4′-bipyridine.  相似文献   

12.
Solar-driven CO2 hydrogenation into multi-carbon products is a highly desirable, but challenging reaction. The bottleneck of this reaction lies in the C−C coupling of C1 intermediates. Herein, we construct the C−C coupling centre for C1 intermediates via the in situ formation of Co0−Coδ+ interface double sites on MgAl2O4 (Co−CoOx/MAO). Our experimental and theoretical prediction results confirmed the effective adsorption and activation of CO2 by the Co0 site to produce C1 intermediates, while the introduction of the electron-deficient state of Coδ+ can effectively reduce the energy barrier of the key CHCH* intermediates. Consequently, Co−CoOx/MAO exhibited a high C2–4 hydrocarbons production rate of 1303 μmol g−1 h−1; the total organic carbon selectivity of C2–4 hydrocarbons is 62.5 % under light irradiation with a high ratio (≈11) of olefin to paraffin. This study provides a new approach toward the design of photocatalysts used for CO2 conversion into C2+ products.  相似文献   

13.
The control of the second coordination sphere in a coordination complex plays an important role in improving catalytic efficiency. Herein, we report a zinc porphyrin complex ZnPor8T with multiple flexible triazole units comprising the second coordination sphere, as an electrocatalyst for the highly selective electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO). This electrocatalyst converted CO2 to CO with a Faradaic efficiency of 99 % and a current density of −6.2 mA cm−2 at −2.4 V vs. Fc/Fc+ in N,N-dimethylformamide using water as the proton source. Structure-function relationship studies were carried out on ZnPor8T analogs containing different numbers of triazole units and distinct triazole geometries; these unveiled that the triazole units function cooperatively to stabilize the CO2-catalyst adduct in order to facilitate intramolecular proton transfer. Our findings demonstrate that incorporating triazole units that function in a cooperative manner is a versatile strategy to enhance the activity of electrocatalytic CO2 conversion.  相似文献   

14.
The conversion of CO2 into ethanol with renewable H2 has attracted tremendous attention due to its integrated functions of carbon elimination and chemical synthesis, but remains challenging. The electronic properties of a catalyst are essential to determine the adsorption strength and configuration of the key intermediates, therefore altering the reaction network for targeted synthesis. Herein, we describe a catalytic system in which a carbon buffer layer is employed to tailor the electronic properties of the ternary ZnOx−Fe5C2−Fe3O4, in which the electron-transfer pathway (ZnOx→Fe species or carbon layer) ensures the appropriate adsorption strength of −CO* on the catalytic interface, facilitating C−C coupling between −CHx* and −CO* for ethanol synthesis. Benefiting from this unique electron-transfer buffering effect, an extremely high ethanol yield of 366.6 gEtOH kgcat−1 h−1 (with CO of 10 vol % co-feeding) is achieved from CO2 hydrogenation. This work provides a powerful electronic modulation strategy for catalyst design in terms of highly oriented synthesis.  相似文献   

15.
We report the unprecedented electrocatalytic activity of a series of molecular nickel thiolate complexes ( 1 – 5 ) in reducing CO2 to C1–3 hydrocarbons on carbon paper in pH-neutral aqueous solutions. Ni(mpo)2 ( 3 , mpo=2-mercaptopyridyl-N-oxide), Ni(pyS)3 ( 4 , pyS=2-mercaptopyridine), and Ni(mp)2 ( 5 , mp=2-mercaptophenolate) were found to generate C3 products from CO2 for the first time in molecular complex. Compound 5 exhibits Faradaic efficiencies (FEs) of 10.6 %, 7.2 %, 8.2 % for C1, C2, C3 hydrocarbons respectively at −1.0 V versus the reversible hydrogen electrode. Addition of CO to the system significantly promotes the FEC1–C3 to 41.1 %, suggesting that a key Ni−CO intermediate is associated with catalysis. A variety of spectroscopies have been performed to show that the structures of nickel complexes remain intact during CO2 reduction.  相似文献   

16.
Realizing industrial-scale production of HCOOH from the CO2 reduction reaction (CO2RR) is very important, but the current density as well as the electrochemical potential window are still limited to date. Herein, we achieved this by integration of chemical adsorption and electrocatalytic capabilities for the CO2RR via anchoring In nanoparticles (NPs) on biomass-derived substrates to create In/X−C (X=N, P, B) bifunctional active centers. The In NPs/chitosan-derived N-doped defective graphene (In/N-dG) catalyst had outstanding performance for the CO2RR with a nearly 100 % Faradaic efficiency (FE) of HCOOH across a wide potential window. Particularly, at 1.2 A ⋅ cm−2 high current density, the FE of HCOOH was as high as 96.0 %, and the reduction potential was as low as −1.17 V vs RHE. When using a membrane electrode assembly (MEA), a pure HCOOH solution could be obtained at the cathode without further separation and purification. The FE of HCOOH was still up to 93.3 % at 0.52 A ⋅ cm−2, and the HCOOH production rate could reach 9.051 mmol ⋅ h−1 ⋅ cm−2. Our results suggested that the defects and multilayer structure in In/N-dG could not only enhance CO2 chemical adsorption capability, but also trigger the formation of an electron-rich catalytic environment around In sites to promote the generation of HCOOH.  相似文献   

17.
鄢维  李渊 《分子催化》2023,37(2):187-201
尿素是一种重要的化工原料并作为氮源广泛应用于化肥生产。工业合成尿素由氮气加氢合成氨气以及氨气和二氧化碳转化为尿素两步实现,存在高能耗和高污染等问题。通过电催化碳氮偶联,将二氧化碳和氮源(氮气、硝酸根、亚硝酸根、一氧化氮等)转化为尿素,可直接跳过合成氨反应并在温和的反应条件下同时实现人工固氮和固碳。因此,尿素电合成技术不仅避免了高能耗和高污染,还能够实现惰性气体分子的高效利用,对于加快实现“碳达峰碳中和”战略有着重要的意义。本文聚焦尿素电合成这一前沿研究热点,结合领域内最新研究进展,首先介绍了不同电催化剂的设计策略及其催化机制,随后总结了电催化碳氮偶联合成尿素的反应机理,并对尿素电合成的后续研究方向进行了展望。  相似文献   

18.
Single atom alloy (SAA) catalysts have been recently explored for promotion of various heterogeneous catalysis, but it remains unexplored for selective electrocatalytic reduction of carbon dioxide (CO2) into multi-carbon (C2+) products involving C−C coupling. Herein we report a single-atomic Bi decorated Cu alloy (denoted as BiCu-SAA) electrocatalyst that could effectively modulate selectivity of CO2 reduction into C2+ products instead of previous C1 ones. The BiCu-SAA catalyst exhibits remarkably superior selectivity of C2+ products with optimal Faradaic efficiency (FE) of 73.4 % compared to the pure copper nanoparticle or Bi nanoparticles-decorated Cu nanocomposites, and its structure and performance can be well maintained at current density of 400 mA cm−2 under the flow cell system. Based on our in situ characterizations and density functional theory calculations, the BiCu-SAA is found to favor the activation of CO2 and subsequent C−C coupling during the electrocatalytic reaction, as should be responsible for its extraordinary C2+ selectivity.  相似文献   

19.
Single-atom catalysts (SACs) show great promise for electrochemical CO2 reduction reaction (CRR), but the low density of active sites and the poor electrical conduction and mass transport of the single-atom electrode greatly limit their performance. Herein, we prepared a nickel single-atom electrode consisting of isolated, high-density and low-valent nickel(I) sites anchored on a self-standing N-doped carbon nanotube array with nickel–copper alloy encapsulation on a carbon-fiber paper. The combination of single-atom nickel(I) sites and self-standing array structure gives rise to an excellent electrocatalytic CO2 reduction performance. The introduction of copper tunes the d-band electron configuration and enhances the adsorption of hydrogen, which impedes the hydrogen evolution reaction. The single-nickel-atom electrode exhibits a specific current density of −32.87 mA cm−2 and turnover frequency of 1962 h−1 at a mild overpotential of 620 mV for CO formation with 97 % Faradic efficiency.  相似文献   

20.
Combining the self-sacrifice of a highly crystalline substance to design a multistep chain reaction towards ultrathin active-layer construction for high-performance water splitting with atmospheric-temperature conditions and an environmentally benign aqueous environment is extremely intriguing and full of challenges. Here, taking cobalt carbonate hydroxides (CCHs) as the initial crystalline material, we choose the Lewis acid metal salt of Fe(NO3)3 to induce an aqueous-phase chain reaction generating free CO32− ions with subsequent instant FeCO3 hydrolysis. The resultant ultrathin (∼5 nm) amorphous Fe-based hydroxide layer on CCH results in considerable activity in catalyzing the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), yielding 10/50 mA ⋅ cm−2 at overpotentials of 230/266.5 mV for OER and 72.5/197.5 mV for HER. The catalysts can operate constantly in 1.0 M KOH over 48 and 45 h for the OER and HER, respectively. For bifunctional catalysis for alkaline electrolyzer assembly, a cell voltage as low as 1.53 V was necessary to yield 10 mA cm−2 (1.7 V at 50 mA cm−2). This work rationally builds high-efficiency electrochemical bifunctional water-splitting catalysts and offers a trial in establishing a controllable nanolevel ultrathin lattice disorder layer through an atmospheric-temperature chemical route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号