首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a measurement of the proton structure function F 2 in the range 3.5 × 10?5x ≤ 4 × 10?3 and 1.5 GeV2Q 2 15 GeV2 at the ep collider HERA operating at a centre-of-mass energy of ${sqrt s} = 300 {? GeV}$. The rise of F 2 with decreasing x observed in the previous HERA measurements persists in this lower x and Q 2 range. The Q 2 evolution of F 2, even at the lowest Q 2 and x measured, is consistent with perturbative QCD.  相似文献   

2.
A measurement of the derivative (∂ lnF2/∂ lnx)Q2≡−λ(x,Q2) of the proton structure function F2 is presented in the low x domain of deeply inelastic positron–proton scattering. For 5×10−5x0.01 and Q21.5 GeV2, λ(x,Q2) is found to be independent of x and to increase linearly with lnQ2.  相似文献   

3.
We report on a measurement of the proton structure functionF 2 in the range 3.5×10−5x≤4×10−3 and 1.5 GeV2Q 2≤15GeV2 at theep collider HERA operating at a centre-of-mass energy of √s=300GeV. The rise ofF 2 with decreasingx observed in the previous HERA measurements persists in this lowerx andQ 2 range. TheQ 2 evolution ofF 2, even at the lowestQ 2 andx measured, is consistent with perturbative QCD. supported by EU HCM contract ERB-CHRX-CT93-0376  相似文献   

4.
It is shown that a significant measurement of the longitudinal structure functionF L (x, Q 2) can be performed at HERA, forQ 2=2 GeV2 andQ 2=5 GeV2 and forx around 10?4, using radiative events with hard photon emission collinear to the incident lepton beam, under the present running conditions and with an integrated luminosity of 10 pb?1. The influence of experimental conditions is discussed.  相似文献   

5.
The ZEUS detector has been used to measure the proton structure functionF 2. During 1993 HERA collided 26.7 GeV electrons on 820 GeV protons. The data sample corresponds to an integrated luminosity of 0.54 pb–1, representing a twenty fold increase in statistics compared to that of 1992. Results are presented for 7Q 2<>4 GeV2 andx values as low as 3×10–4. The rapid rise inF 2 asx decreases observed previously is now studied in greater detail and persists forQ 2 values up to 500 GeV2.supported by Worldlab, Lausanne, Switzerland  相似文献   

6.
The differential gluon structure function of the proton, ?(x, Q 2), introduced by Fadin, Kuraev, and Lipatov in 1975 is extensively used in small-x QCD. We report here the first determination of ?(x, Q 2) from experimental data on the small-x proton structure function F 2p (x, Q 2). We give convenient parametrizations for ?(x, Q 2) based partly on the available DGLAP evolution fits (GRV, CTEQ, and MRS) to parton distribution functions and on realistic extrapolations into the soft region. We discuss the impact of soft gluons on various observables. The x dependence of the so-determined ?(x, Q 2) varies strongly with Q 2 and does not exhibit simple Regge properties. Nonetheless, the hard-to-soft diffusion is found to give rise to a viable approximation of the proton structure function F 2p (x, Q 2) by the soft and hard Regge components with intercepts Δsoft=0 and Δhard ~ 0.4.  相似文献   

7.
The cross section for the diffractive deep-inelastic scattering process ep→eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range xIP<0.1 in fractional proton longitudinal momentum loss, 0.08<|t|<0.5 GeV-2 in squared four-momentum transfer at the proton vertex, 2<Q2<50 GeV2 in photon virtuality and 0.004<β=x/xIP<1, where x is the Bjorken scaling variable. For , the differential cross section has a dependence of approximately dσ/dt∝e6t, independently of xIP, β and Q2 within uncertainties. The cross section is also measured triple differentially in xIP, β and Q2. The xIP dependence is interpreted in terms of an effective pomeron trajectory with intercept αIP(0)=1.114±0.018(stat.)±0.012(syst.)+0.040 -0.020(model) and a sub-leading exchange. The data are in good agreement with an H1 measurement for which the event selection is based on a large gap in the rapidity distribution of the final state hadrons, after accounting for proton dissociation contributions in the latter. Within uncertainties, the dependence of the cross section on x and Q2 can thus be factorised from the dependences on all studied variables which characterise the proton vertex, for both the pomeron and the sub-leading exchange.  相似文献   

8.
A detailed analysis is presented of the diffractive deep-inelastic scattering process ep→eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1-xIP>0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies |t|<1 GeV2. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5≤Q2≤1600 GeV2, triple differentially in xIP, Q2 and β=x/xIP, where x is the Bjorken scaling variable. At low xIP, the data are consistent with a factorisable xIP dependence, which can be described by the exchange of an effective pomeron trajectory with intercept αIP(0)=1.118±0.008(exp.)+0.029 -0.010(model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e+p→ν̄eXY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q2 at fixed xIP and x or on x at fixed Q2 and β.  相似文献   

9.
The isoscalar nucleon structure functionsF 2(x, Q 2) andxF 3(x, Q 2) are measured in the range 0<Q 2<64 GeV2, 1.7<W 2<250 GeV2,x<0.7 using ν and \(\bar v\) interactions on neon in BEBC. The data are used to evaluate possible higher twist contributions and to determine their impact on the evaluation of the QCD parameter Λ. In contrast to previous analyses reaching to such lowW 2 values, it is found that a low \(\Lambda _{\overline {MS} } \) value in the neighbourhood of 100 MeV describes the data adequately and that the contribution of dynamical higher twist effects is small and negative.  相似文献   

10.
A measurement is made of the cross section for the process epeXY in deep-inelastic scattering with the H1 detector at HERA. The cross section is presented in terms of a differential structure function F 2 D(3) (x P, β,Q 2) of the proton over the kinematic range 4.5 < Q 2 < 75 GeV2. The dependence of F 2 D(3) on x P is found to vary with β, demonstrating that a factorisation of F 2 D(3) with a single diffractive flux independent of β and Q 2 is not tenable. An interpretation in which a leading diffractive exchange and a subleading reggeon contribute to F 2 D(3) reproduces well the x P dependence of F 2 D(3) with values for the pomeron and subleading reggeon intercepts of αP (0) = 1.203±0.020(stat.)±0.013(sys.) -0.035 +0.030 (model) and α R (0) = 0.50 ± 0.11(stat.) ± 0.11(sys.) -0.10 +0.09 (model), respectively. A fit is performed of the data using a QCD motivated model, in which parton distributions are assigned to the leading and subleading exchanges. In this model, the majority of the momentum of the pomeron must be carried by gluons in order for the data to be well described.  相似文献   

11.
12.
F 2 c at low x     
We study the heavy-quark contributions to the proton structure function F 2(x,Q 2) at next-to-leading order using compact formulas at small values of Bjorken??s x variable. The formulas provide a good agreement with the modern HERA data for F 2 c (x,Q 2).  相似文献   

13.
The gluon and quark distributions of the nucleon are evaluated using the Altarelli-Parisi equations with the input distributions atQ 0 2 =5 GeV2 for seaquarks and gluons modified by the factor (ax ?0.5+b). The new parametrization is constrained to satisfy the momentum sum rule and after backward evolution (fromQ 0 2 =5 GeV2 toQ 2=1 GeV2) it is also constrained to give approximately 1/x behaviour of the sea-quark and gluon distributions in the limited region of smallx (10?3<x<10?2 or so). The theoretical predictions relevant for HERA for structure functionsF 2(x, Q 2) andF L (x, Q 2) in the region of very smallx(10?4<x<10?2) and largeQ 2 and for the cross-sectionσ* pΨX) are presented. Distributions of heavy quarks (c,b,t) are also discussed.  相似文献   

14.
《Nuclear Physics B》1999,539(3):535-554
A systematic study of ϖF2(x, Q2)/ϖ ln Q2 and ϖ ln F2(x, Q2)/ϖ ln(1/x) is carried out in pQCD taking screening corrections into account. The result of calculations, which are different from the non-screened DGLAP prediction, are compared and shown to agree with the available experimental data as well as a pseudo data base generated from the ALLM'97 parameterization. This pseudo data base allows us to study in detail our predictions over a wider kinematic region than is available experimentally, and allows us to make suggestions for future experiments. Our results are compared with the GRV'94 parameterization (which is used as an input for our calculations) as well as the recently proposed MRST structure functions.  相似文献   

15.
Prabhdeep Kaur 《Pramana》2012,79(5):1231-1234
The measurements of the reduced cross-sections for e ?+? p deep inelastic scattering at high inelasticities y for three different centre-of-mass energies, 318, 251 and 225 GeV have been extended to lower momentum transferred squared, Q 2. The analysis of satellite vertex events allows one to extend the cross-section measurement at high y down to Q 2 = 4.5 GeV2, substantially lower that the previously published cross-section measurement from which the longitudinal structure function, F L, was extracted.  相似文献   

16.
Abhijeet Das  A Saikia 《Pramana》1999,53(4):701-706
We obtain a relation between the longitudinal structure function F L(x, Q 2), F 2(x, Q 2) and G(x, Q 2) at small x, using the formalism recently reported by one of the authors [2]. We also obtain a relation between F L(x, Q 2), F 2(x, Q 2) and its slope (dF 2(x, Q 2))/(dlnQ 2). This provides us with the determination of the longitudinal structure function F L(x, Q 2) from F 2(x, Q 2) data and hence extract the gluon distribution G(x, Q 2).  相似文献   

17.
We revisit F π(Q 2) and F (Q 2), P = π, η, η′, making use of the local-duality (LD) version of QCD sum rules. We give arguments that the LD sum rule provides reliable predictions for these form factors at Q 2 ≥ 5–6 GeV2, the accuracy of the method increasing with Q 2 in this region. For the pion elastic form factor, the well-measured data at small Q 2 give a hint that the LD limit may be reached already at relatively low values of momentum transfers, Q 2 ≈ 4–8 GeV2; we therefore conclude that large deviations from LD in the region Q 2 = 20–50 GeV2 seem very unlikely. The data on the (η, η′) → γγ* form factors meet the expectations from the LD model. However, the BaBar results for the π 0γγ* form factor imply a violation of LD growing with Q 2 even at Q 2 ≈ 40 GeV2, at odds with the η, η′ case and with the general properties expected for the LD sum rule.  相似文献   

18.
Electron-proton deep inelastic scattering is treated as the incoherent scattering of electrons by bound Dirac partons in the proton rest frame. An approximate bound state wave function is used for the initial parton, while the final parton is considered free. A good fit is obtained to the structure function F1(x,Q2) in the range x > 0.15, Q2 > 2 GeV. The subsequent prediction for F2(x,Q2) is not as good, indicating a small additional contribution by longitudinal photons for W < 2.5 GeV. The parton momentum distribution is found to contain transverse momentum of 400–600 MeV, increasing with x.  相似文献   

19.
The hadronic photon structure functionF 2 γ has been measured in theQ 2 range from 4 to 30 GeV2/c 4 and down tox values of order 0.001, using data taken with the DELPHI detector at LEP between 1991 and 1993. A comparison is made with severalF 2 γ parameterizations with special emphasis on their lowx behaviour. A result on theQ 2 evolution ofF 2 γ is presented.  相似文献   

20.
We study two experimental ways to measure the heavy-quark content of the proton: using the Callan-Gross ratio R(x, Q 2) = F L /F T and/or the azimuthal cos(2φ) asymmetry in DIS. Our approach is based on the following observations. First, the ratio R(x, Q 2) = F L /F T and azimuthal cos(2φ) asymmetry in heavy-quark leptoproduction are stable, both parametrically and perturbatively, within pQCD. Second, both these quantities are sensitive to resummation of the mass logarithms of the type αsln(Q 2/m 2). We conclude that the heavy-quark densities in the nucleon can, in principle, be determined from high-Q 2 data on the Callan-Gross ratio and/or the azimuthal asymmetry. In particular, the charm content of the proton can be measured in future studies at the proposed Large Hadron-Electron (LHeC) and Electron-Ion (EIC) Colliders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号