首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The application of a tuned Langmuir probe to the measurement of the charged particle characteristics of electron number density, ion number density, electron energy distribution function, average electron energy and electron temperature, in an analytical radio frequency (r.f.)-glow discharge is described. Studies focus on the roles of discharge operating conditions and plasma sampling position for conductive (copper) and nonconductive (Macor) samples. Based on the data obtained here, apparent differences in plasma characteristics between conductive and nonconductive samples can be reasonably explained. For example, the sputtering of conductive samples results in plasmas with obviously higher electron and ion number densities than the sputtering of nonconductive samples (e.g. ni = 1.8 × 1010 cm−3 and ne = 1.5 × 109 cm−3 for copper, and ni = 8 × 109 cm−3 and ne = 5 × 108 cm−3 for Macor under the conditions of argon pressure = 4 Torr, r.f. power = 30 W and sampling distance = 4.5 mm). Conversely, nonconductive samples yield electrons with higher energies (average electron energies of 15 and 7.5 eV and temperatures of 6.5 and 3.5 eV respectively for the Macor and copper samples). Lower d.c. bias potentials for the case of sputtering nonconductive samples yield reduced sputtering rates and charged particle densities, though the electrons in the latter case have higher energies and thus improved excitation capabilities. The differences between r.f.- and d.c.-glow discharge optical emission spectra are also discussed relative to reported electron energy characteristics. Studies such as these will lay the ground-work for extensive evaluation of inter-matrix type standardization for r.f.-glow discharge atomic emission spectrometry.  相似文献   

2.
When determining element contents in hair samples without sample digestion it is necessary to analyze large sample volumes in order to minimize problems of inhomogeneity of biological sample materials. Therefore an electrothermal vaporization system (ETV) is used for solid sample introduction into an inductively coupled plasma (ICP) for the determination of matrix and trace elements in hair. This paper concentrates on the instrumental aspects without time consuming sample preparation. The results obtained for optimization tests, ETV operating parameters and ICP operating parameters, are shown and discussed. Standard additions are used for calibration for the determination of Zn, Mg, and Mn in human hair. Studies including reproducibility and detection limits for chosen elements have been carried out on certified reference materials (CRMs). The determination of reproducibility (relative standard deviation (RSD) of n = 10) and detection limits (DLs) of Zn (RSD < 8.5%, DL < 0.8 μ g−1), Mn (RSD < 14.1%, DL < 0.3 μ g−1), and Mg (RSD < 7.4%, DL < 6.6 μ g−1) are satisfactory. The concentration values found show good agreement with the corresponding certified values. Further sample preparation steps, including hair sampling, washing procedure and homogenization for hair, relating to measurements of real hair samples are described.  相似文献   

3.
Analytical schemes for the determination of trace elements in high-purity niobium, tantalum and their oxides are proposed. The schemes are based on microwave dissolution of the metals and oxides followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) determination of impurities in the solutions. The possibilities of interelement and off-peak background corrections in ICP-AES analysis are discussed. The accuracy of the results obtained is confirmed by the determination of trace elements after a matrix sorption separation procedure. For a number of elements, a comparison of the results obtained by ICP-AES without and with the matrix separation procedure and by electrothermal atomic absorption spectrometry (ETAAS) shows good agreement. The limits of detection for direct ICP-AES determination are in the range 0.4*1.0 μg g−1 for Ba, Ca, Fe, Mg, Mn, Y and La; between 2.0 and 10.0 μ g−1 for B, Cd, Co, Cr, Cu, Hf, Mo, Na, Nb, Ni, Pb, Sr, Ti, Zr and Ta; and for K, Sb and W a detection limit of 20 μ g−1 is achieved. The schemes proposed are intended for rapid routine analysis.  相似文献   

4.
A planar magnetron radio-frequency-powered glow discharge source has been constructed and characterized. Electrical behavior, sputtering rates, and emission properties of the source have been studied with both conducting and insulating samples over a pressure range of 0.05 to 0.6 Torr, and over a forward-power range between 30 and 120 W. The bias voltage showed little or no dependence on power or on pressure between 0.2 and 0.6 Torr. However, at lower pressures there was a sharp increase in the voltage as pressure was dropped, signaling a change in the operational mode of the discharge. The magnetron source proved to have much higher sputtering rates for both conducting and insulating samples than a similar source without a magnet; the highest sputtering rates were found at 0.05 Torr. The dependence of emission on pressure was similar to that of previously described d.c. magnetron sources. Detection limits ranged from 1 to 50 ppm for elements in a conducting matrix.  相似文献   

5.
《Analytical letters》2012,45(2):323-335
ABSTRACT

A new radiofrequency capacitively coupled plasma source (r.f.CCP) was used for Cd determination in dust samples by atomic emission spectrometry. The plasma torch consists of a molybdenum tube electrode and one or two ring electrodes situated outside the quartz tube. Plasma was operated at 27.12 MHz, at low power (275 W) and low gas consumption (0.4 1 min? argon flow). The choice of the optimum operating conditions for Cd determination in dust samples dissolved in acids and pneumatically nebulized is presented. The results obtained in such samples were compared with those obtained by flame atomic absorption spectrometry (FAAS). The matrix effect of NaCl and CaCl2 on Cd emission was also studied depending of the plasma coupling system. The true limit of detection for Cd in dust sample by r.f.CCP-AES is 3 μg g?1. Concentration of Cd higher than 10 μg g?1 can be determined by the proposed method with a relative standard deviation within the range 5 - 10%. The recovery is 100 ± 10%.  相似文献   

6.
Spatially resolved atomic emission intensities from helium, and molecular emission intensities from OH and N+2 have been measured in a furnace atomization plasma excitation spectrometry (FAPES) source. He I emission at 388.86 nm was used to monitor the spatial structure of the plasma in the source while increasing the radio frequency (r.f.) power applied to its center electrode. At higher r.f. power the He I emission intensity increased significantly while its spatial structure remained relatively unchanged. The He I emission was found to be most intense adjacent to the center electrode. Some less intense emission was observed adjacent to the graphite cuvette wall and some very weak emission was seen throughout the volume of the source. These observations suggest that the FAPES source operates as an r.f. glow discharge.Emission intensities from the OH (0-0) rotational A 2Σ+X 2Πi and N+2 (0-0) rotational B 2Σ+o2Σ=g bands were used to monitor the effects of increasing the r.f. power applied to the center electrode of the source. From these measurements, rotational temperatures for these molecules were calculated. The intensity measurements showed that there is a significant thermal gradient in the source with OH rotational temperatures ranging between 680 and 1050 K and N+2 rotational temperatures ranging between 580 and 1920 K with 60 W r.f. power applied to the center electrode. At higher r.f. powers there is an increase in rotational temperatures and an increase in the dissociation of molecular species in the FAPES source.Lead excitation temperatures were calculated using the line ratio method by measuring the emission of the Pb I 280.119 and 283.306 nm lines at different r.f. powers. The temperature was found to increase monotonically with r.f. power over the range of 35 to 75 W.  相似文献   

7.
Equivalent discharge conditions, where the intensities of the analyte are almost the same between the d.c. and the r.f. power modes, have been investigated in Grimm glow discharge emission spectrometry. The two plasmas have similar emission and sputtering characteristics, enabling the conditions to be found easily. Various emission lines of argon ion are commonly observed from the argon discharges regardless of the power modes. A method to determine the equivalent discharge conditions is suggested, based on intensity analysis of the argon ionic lines.  相似文献   

8.
The operation of a glow discharge lamp with integrated microwave resonator for the analysis of electrically conducting solid samples by atomic emission spectrometry is described. While the glow discharge in argon at a pressure of 300 Pa mainly serves for the production of free sample atoms by cathodic sputtering, a 40 W microwave discharge is applied for additional excitation of the ablated material. The construction of the lamp and the optimization of the working conditions are described. The intensities as well as the signal-to-background ratios of many analytical lines were found to be improved as compared to a conventional glow discharge lamp. The analytical performance is demonstrated by analysis results for steel samples. Detection limits for 13 elements in steel are between 0.05 and 1 μg/g. Because of the optically thin plasma the new lamp shows a large linear dynamic range.  相似文献   

9.
In a radio-frequency-powered glow discharge lamp, a d.c. bias current which is driven by a self-bias voltage can lead to an enhancement of the emission intensities excited by the plasma. The driving frequency of the r.f. plasma is an important parameter to determine the self-bias voltage; lower r.f. frequencies induce greater self-bias voltages. The effects of the bias current introduction on the emission characteristics were compared between a 13.56-MHz plasma and a 6.78-MHz plasma. As a result, the 6.78-MHz plasma offered a better analytical performance, probably due to higher self-bias voltages, if the introduced Ar pressure was optimized. This method was applied to a Mo determination in Fe-matrix alloy samples. At bias currents of 40 - 50 mA, the emission intensities of the Mo I 379.82-nm line were about 10-times larger than those obtained with the conventional plasma when the 6.78-MHz plasma was produced at an r.f. power of 60 W. The detection limit obtained for this calibration was 2.0 x 10(-4) mass % Mo at an 80-W r.f. power and at a d.c. bias current of 68 mA.  相似文献   

10.
A detailed theory of relative sputtering rates for glow discharge optical emission spectroscopy (GDOES) is presented for the first time. The theory suggests that such sputtering rates should be nearly independent of plasma conditions. This is supported by experimental results for r.f. GDOES under varying applied power or varying pressure. Relative sputtering rates are calculated for a range of cast irons, high‐alloy steels and zinc–aluminium alloys. Within measurement uncertainties, the calculated rates agree with measured relative sputtering rates. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
A parametric study has been conducted on a radio frequency powered glow discharge atomic emission spectrometry (rf-GD-AES) source to evaluate its performance in the direct analysis of non-conducting solid materials. These experiments include both the emission and electrical characterization of this system with respect to discharge power, pressure, limiting anode orifice diameter, and sample size. The rf-GD-AES source has been demonstrated to operate interchangeably between conducting and non-conducting sample materials; however, the energy dissipated within the plasma appears to be reduced with the dielectric samples, resulting in lower emission intensities and sputtering rates. The power losses have also been found to be a function of the size, or thickness, of the sample materials. Despite these limitations of the system, preliminary emission data demonstrate that the rf-GD-AES system can be successfully employed in the direct, trace analysis of non-conducting sample materials.  相似文献   

12.
A rapid, simple and rugged procedure without requiring any prior sample treatment was developed for the determination of acetylsalicylic acid (ASA) in tablets formulations by solid-phase fluorescence spectroscopy. The method was carried out on powdered samples, consisting of an active substance dispersed in lactose, maize starch, talc and magnesium stearate. Previous knowledge of the sample bulk composition is needed for proper application of the method. Wavelengths for maximum excitation and emission were 288 and 318 nm, respectively, and the fluorescence intensity was linear with ASA concentration within the 50-170 mg g−1 range. Detection and quantification limits were 2.2 and 7.3 mg g−1, and the analytical frequency was 200 h−1. For a typical sample, the relative standard deviation of results was estimated as 2.3% (n = 10). Accuracy was assessed by comparing the analytical results obtained with the proposed method with those related to a reference method recommended by British Pharmacopoeia: no differences between the methods were found at the 95% confidence level.  相似文献   

13.
Here, flower-like manganese oxide with enriched oxygen vacancies were reported for high performance supercapacitors. The moderate oxygen-vacancy were achieved by controlling annealing atmosphere. Benefiting from improving the conductivity and the density of active sites, MnOx−Ar sample as an electrode material has remarkable specific capacity (339 mAh g−1 at 0.5 A g−1), extraordinary rate capability (90 % capacity retention at 1 A g−1), and good cycling property (90 % capacity retention at 1 A g−1 after 5000 cycles). Additionally, the asymmetric supercapacitor (ASC) was assembled which used the MnOx−Ar sample as cathode and Kochen Black (KB) as anode, which displayed a remarkable energy density (16 Wh kg−1) at a large power density (7593 W kg−1). These results, on the one hand, further expand the application of MnO2-based materials, and on the other hand, offer a new perspective for the oxygen non-stoichiometry in material electrochemistry.  相似文献   

14.

Methods were determined for lead and tin determinations in river, marine and lake sediments by slurry sampling and graphite furnace atomic absorption spectrometry. The optimizations were carried out using River Sediment BCR 320 and Marine Sediment PACS-2 for Pb and Sn, respectively. For Pb determination, the parameters studied included inorganic acid mixture, stabilizing agent, sample mass and sonication time. The influence of diluents and the extraction to the liquid phase for two different matrices was evaluated for Sn. The Pb content in the slurry liquid phase was ca. 56%, and ranged from 75% to 100% for Sn. Representative masses of 34 and 45 mg, and effective masses of 12 and 48 μg for Pb and Sn, respectively, were obtained under optimized conditions. Detection and quantification limits of 0.2 and 0.7 μg g−1 for Pb, and 1.5–2.6 and 4.5–7.6 μg g−1 for Sn were obtained.

  相似文献   

15.
A method for the determination of mercury, arsenic and selenium by neutron activation analysis is described. Radiochemical separations are performed by selective distillation followed by electrolysis of mercury on gold and precipitation of arsenic and/or selenium by reduction to the elemental form. The chemical yields are 80–90% for mercury and 90–100% for arsenic and selenium. Interference tests have been carried out with reference to those elements most likely to interfere with the analysis. Detection limits for mercury, arsenic and selenium using 0.1 g of sample are 0.2 ng g–1, 2 ng g–1 and 3 ng g–1, resp. Detection limits can be improved using greater sample size and neutron flux density. Results from the analysis of several NBS standard reference materials are given.  相似文献   

16.
A 100-MHz ICP generator has been investigated as to the temperature, the ionization capability and the limits of detection of some elements in emission spectrometry. The results have been compared with those previously obtained in the 5–64 MHz range to assess the influence of the frequency on analytical performance. The 100 MHz frequency has several advantages, in particular in gas consumption and torch design. However, the larger part of the improvement in analytical performance is realized at frequencies between 5 and 40 MHz. This supports the present trend to introduce 40 MHz generators (instead of 27 MHz).  相似文献   

17.
This paper presents a statistical comparison of Cu, Mn and Zn determinations in biological samples by low power radiofrequency capacitively coupled Ar plasma (275W; 27.12MHz; 0.4Lmin–1 flow rate) atomic emission spectrometry and flame atomic absorption spectrometry using statistical analysis according to the Bland and Altman test and linear regression. For a content (µgg–1 dry mass) of 5-43 Cu, 10-15800 Mn and 8-1100 Zn in fish fillet and freshwater molluscs, there was no significant bias in r.f.CCP-AES for a 95% confidence level. Certified reference materials were analysed by r.f.CCP-AES, and a good agreement between analysis results and certified values was obtained. Matrix effects of Ca and Na and their influence on the detection limits of Cu, Mn and Zn are presented for both methods. As compared to FAAS, r.f.CCP-AES is more prone to interferences and, consequently, the detection limits for Cu, Mn and Zn in biological samples (2; 2 and 3µgg–1 dry mass) are higher than those in FAAS. In spite of these problems, r.f.CCP-AES is capable of accurate and precise analyses of biological samples.  相似文献   

18.
An inductively coupled plasma-atomic emission spectrometry (ICP-AES) method is developed for determination of Cd, Co, Cr, Cu, Ni, Tl and Zn in traces in calcite, CaCO3, dolomite, CaMg(CO3)2, and gypsum, CaSO4. Interferences of a Ca/Mg matrix on analyte intensities were investigated. The results reveal that Ca does not interfere with Cr, Ni and Zn, but tends to decrease the intensity of the other elements. Magnesium as a matrix element does not interfere on with Zn, but increases the intensities of Ni, Cr and Cu, and decreases the intensities of Cd, Co and Tl. To eliminate these matrix interferences on trace element intensities, a flotation separation method is proposed. Lead(II) hexamethylenedithiocarbamate, Pb(HMDTC)2, is applied as a collector for flotation of trace elements from acidic solutions of mineral samples. The flotation of acidic aqueous solutions of calcite, dolomite and gypsum was performed at pH 6.0, using 10 mg l−1 Pb and 0.3 mmol l−1 HMDTC added to 1 l of solution tested. The method detection limits of analytes in different minerals range from 0.02 to 0.06 μg g−1 for Cd, 0.04 to 0.10 μg g−1 for Co, 0.03 to 0.13 μg g−1 for Cr, 0.02 to 0.16 μg g−1 for Cu, 0.09 to 0.30 μg g−1 for Ni, 6.45 to 7.71 μg g−1 for Tl and 0.18 to 0.20 μg g−1 for Zn.  相似文献   

19.
Conventional approaches for the analysis of platinum group elements (PGEs) in plant material suffer from sample digestion which results in sample dilution and therefore requires high sample intakes to maintain the sensitivity. The presented solid-sampling method avoids sample digestion while improving sensitivity when compared to digestion-based inductively coupled plasma optical emission spectrometry (ICP-OES) methods and allows the analysis of sample masses of 5 mg or less. Detection limits of 0.38 μg g 1, 0.14 μg g 1 and 0.13 μg g 1 were obtained for Pt, Pd and Rh, respectively using a sample intake of 5 mg. The reproducibility of the procedure ranged between 4.7% (Pd) relative standard deviation (RSD, n = 7) and 7.1% (Rh) RSD for 25 ng analytes. For quantification, aqueous standards were applied on paper filter strips and dried. Only the dried filters were introduced into the electrothermal vaporization unit. This approach successfully removed memory-effects observed during analysis of platinum which occurred only if liquid standards came into contact with the graphite material of the furnace. The presented method for overcoming the Pt-memory-effects may be of further interest for the analysis of other carbide-forming analytes as it does not require any technical modification of the graphite furnace (e.g., metal inlays, pyrolytic coating). Owing to lack of suitable certified reference materials, the proposed method was compared with conventional ICP-OES analysis of digested samples and a good agreement was obtained. As a result of the low sample consumption, it was possible to determine the spatial distribution of PGEs within a single plant. Significant differences in PGE concentrations were observed between the shoots (stem, leaves) and the roots. Pd was mainly found in the roots, whereas Pt and Rh were also found in higher concentrations in the shoots.  相似文献   

20.
An extended study of different sampling introduction approaches using inductively coupled plasma mass spectrometry (ICP-MS) is presented for the determination of boron in steel samples. The following systems for sample introduction were applied: direct sample solution nebulization by continuous nebulization (CN) using a cross-flow nebulizer and with flow injection (FI), applied to 0.1% (m/v) and 0.5% (m/v) sample solutions, respectively; FI after iron matrix extraction, using acetylacetone–chloroform, and isotopic dilution (ID) analysis as the calibration method; FI with on-line electrolytic matrix separation; and spark ablation (SA) and laser ablation (LA) as solid sampling techniques. External calibration with matrix-matching samples was used with CN, SA, and LA, and only acid solutions (without matrix matching) with FI methods. When FI was directly applied to a sample solution, the detection limit was of 0.15 μg g−1, improving by a factor of 4 that was obtained from the CN measurements. Isotopic dilution analysis, after matrix removal by solvent extraction, made it possible to analyse boron with a detection limit of 0.02 μg g−1 and, with the on-line electrolytic process, the detection limit was of 0.05 μg g−1. The precision for concentrations above 10 times the detection limit was better than 2% for CN, as well as for FI methods. Spark and laser ablation sampling systems, avoiding digestion and sample preparation procedures, provided detection limits at the μg g−1 levels, with RSD values better than 6% in both cases. Certified Reference Materials with B contents in the range 0.5–118 μg g−1 were used for validation, finding a good agreement between certified and calculated values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号