首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We report the results of a selected ion flow tube (SIFT) study of the reactions of H3O+, NO+ and O+2 with some nine carboxylic acids and eight esters. We assume that all the exothermic proton transfer reactions of H3O+ with all the acid and esters molecules occur at the collisional rate, i.e. the rate coefficients, k, are equal to kc; then it is seen that k values for most of the NO+ and O+2 reactions also are equal to or close to kc. The major ionic products of the H3O+ reactions with both the acids and esters are the protonated parent molecules, MH+, but minor channels are also evident, these being the result of H2O elimination from the excited (MH+)1 in some of the acid reactions and an alcohol molecule elimination (CH3OH or C2H5OH) in some of the ester reactions. The NO+ reactions with the acids and esters result in both ion-molecule association producing NO+M in parallel with hydroxide ion (OH) transfer with some of the acids, and parallel methoxide ion (CH3O) and ethoxide ion (C2H5O) transfer as appropriate with some of the esters. The O+2 reactions proceed by dissociative charge transfer with the production of two or more ionic fragments of the parent molecules, the different isomeric forms of both the acid and the ester molecules resulting in different product ions.  相似文献   

2.
Reactions of Fe+ and FeL+ [L=O, C4H6, c-C5H6, C5H5, C6H6, C5H4(=CH2)] with thiophene, furan, and pyrrole in the gas phase by using Fourier transform mass spectrometry are described. Fe+, Fe(C5H5)+, and FeC6H 6 + yield exclusive rapid adduct formation with thiophene, furan, and pyrrole. In addition, the iron-diene complexes [FeC4H 6 + and Fe(c-C5H6)+], as well as FeC5H4(=CH2)+ and FeO+, are quite reactive. The most intriguing reaction is the predominant direct extrusion of CO from furan by FeC4H6 +, Fe(c-C5H6)+, and FeC5H4(=CH2)+. In addition, FeC4H 6 + and Fe(c-C5H6)+ cause minor amounts of HCN extrusion from pyrrole. Mechanisms are presented for these CO and HCN extrusion reactions. The absence of CS elimination from thiophene may be due to the higher energy requirements than those for CO extrusion from furan or HCN extrusion from pyrrole. The dominant reaction channel for reaction of Fe(c-C5H6)+ with pyrrole and thiophene is hydrogen-atom displacement, which implies DO(Fa(N5H5)+-C4H4X)>DO(Fe(C5H5)+-H)=46±5 kcal mol?1. DO(Fe+-C4H4S) and DO(Fe+-C4H5N)=DO(Fe+-C4H6)=48±5 kcal mol?1. Finally, 55±5 kcal mol?1=DO(Fe+-C6H6)>DO(Fe+-C4H4O)>DO(Fe+-C2H4)=39.9±1.4 kcal mol?1. FeO+ reacts rapidly with thiophene, furan, and pyrrole to yield initial loss of CO followed by additional neutral losses. DO(Fe+-CS)>DO(Fe+-C4H4S)≈48±5 kcal mol?1 and DO(Fe+-C4H5N)≈48±5 kcal mol?1>DO(Fe+-HCN)>DO(Fe+-C2H4)=39.9±1.4 kcal mil?1.  相似文献   

3.
A new molecular complex of fullerene with tetramethyltetraselenafulvalene (TMTSF), C60·TMTSF·2CS2, (1) was synthesized. The structure and composition of the complex were established by X-ray diffraction analysis. The crystals of C60·C10H12Se4·2CS2 are monoclinic:a=15.407(2),b=12.934(2),c=12.026(2) Å β=108.39(3)°,V=2274.1(6) Å3, space groupCm, Z=2,d calc=1.929 g cm?3,R=0.047. The crystal structure of 1 consists of layers. Layers formed by fullerene and CS2 molecules alternate with layers of TMTSF molecules. Peculiarities of the crystal structure of 1 are the nonplanar conformation of TMTSF molecules and the absence of shortened C…C contacts between adjacent fullerenes molecules. The energy of intermolecular TMTSF…C60 interactions in the crystal was estimated.  相似文献   

4.
The reactions of ?-C3H3+ (propargylium cation) with acetylene and diacetylene have been modeled kinetically. Data were obtained from Fourier Transform Ion Cyclotron Resonance (FTICR) experiments on these systems, which are themselves models for soot particle initiation. Acetylene forms an encounter complex with ?-C3H3+, but, in the absence of a third body collision, the complex decomposes to acetylene and c-C3H3+ (cyclopropenylium cation) at about 1/3 the rate it decomposes to acetylene and ?-C3H3+, in spite of the fact that c-C3H3+ is ca. 115 kJ/mol more stable than ?-C3H3+. The encounter complex is long enough lived, and energetic enough, to scramble deuterium in reactions between ?-C3H3+ and C2D2. These reactions have been successfully modeled, yielding a nearly statistical distribution of deuterium, and a rather large kinetic isotope effect. The more complex reactions of ?-C3H3+ with diacetylene have also been modeled.  相似文献   

5.
[Co(R-η-C3H4)(η-C5H5)I] is a good precursor for the preparation of some new cationic complexes as the iodide can easily be replaced; thus addition of PEt3 to the iodo-complex (R  H) gives [Co(η-C3H5)(η-C5H5)(PEt3)]+. The reactions of [Co(R-η-C3H4)(η-C5H5))I] (R  H or 2-Me) with AgBF4 give solutions containing the coordinatively unsaturated species [Co(R-η-C3H4)(η-C5H5)+. The presence of traces of water leads to the formation of [Co(R-ηC3H4)-(η-C5H5)(H2O)]+. The addition of monodentate ligands L  PEt3 PPh3, AsPh3, SbPh3, CNCH3 and bidentate ligands LL  Ph2PCH2CH2PPh2(dppe) and o-C6H4(AsMe2)2(diars), gives, respectively mononuclear [Co(2-Me-ηC3H4)-(η-C5H5)L]+ and binuclear ligand-bridged [(2-Me-ηC3H4)(η-C5H5)CoLLCo(2-Me-ηC3H4)(η-C5H5))]2+ complexes. Crystals of [Co(2-Me-ηC3H4)(η-C5H5)-(H2O)]+[BF4]- are monoclinic, space group P21/c, with a 7.858(3), b 10.262(4), c 15.078(4) Å, β 98.36(1)°. The molecular structure contains the cobalt atom bonded to planar 2-Me-allyl and cyclopentadienyl substituents, which are almost parallel with the H2O molecule in a staggered conformation with respect to the 2-Me group.  相似文献   

6.
Reactions of η5-C5H5Fe(CO)2CH2CCR (R  CH3, C6H5, and CH2Fe(CO)25-C5H5)) with HBF4 in acetic anhydride yield [η5-C5H5Fe(CO)22CH2CCHR)]+BF?4. The resultant cationic iron-η2-allene complexes react with a wide range of nucleophiles (Nu) to give the following types of behavior: (a) addition of Nu to carbon-1 of the η2-allene fragment (with NaBH4, (C2H5)2NH, and P(C6H5)3, inter alia), (b) addition of Nu to carbon-2 of the η2-allene fragment (with NaOCH3), (c) addition of Nu to the carbonyl carbon (with NaOC2H5), (d) deprotonation of the iron-η2-allene cation to the parent propargylic complex (with N(C2H5)3), and (e) nonselective reactions to yield a mixture of products (with CH3Li). Of these, the most common is behavior (a); together with the protonation of η5-C5H5Fe(CO)2CH2CCR it stimulates the two-step (3 + 2) cycloaddition reactions between electrophilic molecules and these iron-propargyl complexes.  相似文献   

7.
A method is described for extrapolating existing experimental data on the reactions of OH radicals with alkanes to higher temperatures using conventional transition-state theory. Expressions are developed for the estimation of the structural properties of the activated complex necessary for calculating ΔS± and ΔH±. The vibrational frequencies and internal rotations of the activated complex are given by those of the reacting alkane or the analogous alcohol and a set of additional internal modes that is the same for all OH + alkane reactions considered. Differences between primary, secondary, and tertiary hydrogen attack are discussed, and the validity of representing the activated complexes of all OH + alkane reactions by a fixed set of vibrational frequencies and other internal modes is evaluated. Calculations are presented for the reaction of OH with CH4, C2H6, C3H8, n-C4H10, i-C4H10, c-C4H8, c-C5H10, c-C6H12, (CH3)2CHCH(CH3)2, (CH3)3CCH(CH3)2, (CH3)4C, and (CH3)3CC(CH3)3, and the results are compared with experiments.  相似文献   

8.
《Chemical physics letters》1987,136(6):495-500
Reactions of He+,C+ and N+ ions with C6F6, and c-C6H6 were examined at 27, 68 and 297 K using both CRESU and SIFT techniques. Within the experimental uncertainties, all of the rate coefficients are found to be temperature-independent in this range. The results are discussed in relation to the most recent theoretical models describing the influence of the quadrupole moment on the temperature dependence of ion-molecule reaction rate coefficients.  相似文献   

9.
The reactions of the fluorobenzenes, C6F5H, o-C6H2F4, m-C6H2F4, p-C6H2F4, 1,3,5-C6F3H3, 1,2,4-C6F3H3, o-C6F2H4, m-C6F2H4, p-C6F2H4 and C6F5H with thiolate anion nucleophiles RS? (primarily MeS?), have been studied in ethylene glycol/pyridine mixtures as a solvent. Multiple replacement of fluorine atoms was observed in the more highly fluorinated compounds, but in all cases two aromatic fluorine atoms were not replaced. Difluorobenzene and fluorobenzene did not react. The product orientations have been deduced from their NMR spectra. The mass spectra of the isomeric products C6F2H3(SMe), C6F3H2(SMe) and C6F2H2(SMe)2 have been examined.  相似文献   

10.
The reactions of arenediazomolybdenum(II) complexes such as [(η-C5H5)Mo(N2C6H4CH3-p)I2]2, (η-C5H5)Mo(CO species with neutral and anionic monodentate or chelating ligands have been investigated. The new arenediazo complexes isolated from these reactions include neutral species such as (η-C5H5)Mo(PPh3)(N2C6H4CH3-p)I2 and (η-C5H5)Mo(N2C6H4CH3-p) cations of the type [η-C5H5)Mo(bipy)(N2C6H4CH3-p)I]+ and the anion [(η-C5H5)Mo(N2C6H4CH3-p)I3]?. The structures of the new complexes are discussed.  相似文献   

11.
The reactions of [Rh(CO)2Cl]2 with α-diimines, RN=CR′-CR′=NR (R = c-Hex, C6H5, p-C6H4OH, p-C6H4CH3, p-C6H4OCH3, R′ = H; R = c-Hex, C6H5, p-C6H4OH, p-C6H4OCH3; R′ = Me) in 2:1 Rh/R-dim ratio gave rise to ionic compounds [(CO)2Rh.R-dim(R′,R′)][Rh(CO)2Cl2] which have been characterized by elemental analyses, electrical conductivity, 1H-NMR and electronic and IR spectroscopy. Some of these complexes must involve some kind of metal-metal interaction. The complex [Rh(CO)2Cl.c-Hex-dim(H,H)] has been obtained by reaction of [Rh(CO)2Cl]2 with the c-Hex-dim(H,H) ligand in 1:1 Rh/R-dim ratio. The reactions between [(CO)2Rh.R-dim(H,H)][Rh(CO)2Cl2](R = c-Hex or p-C6H4OCH3) with the dppe ligand have been studied. The known complex RhCl(CO)(PPh3)2 has been isolated from the reaction of [(CO)2Rh.R-dim(H,H)]-[Rh(CO)2Cl2] (R = c-Hex or p-C6H4OCH3) with PPh3 ligand.  相似文献   

12.
Ionization energies of 11 substituted benzenes of CS2 related to the ionization energy of benzene were obtained by measurements of the charge exchange equilibrium constants for C6H5X+ + C6H5Y ? C6H5Y+ + C6H5X at 450 and K. Thermodynamic ionization energies of substituted benzenes, related to that of benzene, are found to be higher by 0.5–2.0 kcal/mole than the corresponding photoionization (0—0) values. Exothermic charge transfer reactions between substituted benzenes are found to proceed with rate constants of (1.3–1.6) × 10?9 cm3/mol s, which agree well with calculated collision rates.  相似文献   

13.
Tandem mass spectrometric studies show that SiH+5 is formed in bimolecular reactions of SiH4 and NH+2, C2H+3, C2H+6 and C3H+8 ions. The dependence of the reaction cross sections on ion energy indicates the formation of SiH+5 from NH+2, C2H+3, and C2H+6 to be exothermic reactions, while formation from C3H+8 is endothermic. Using known thermochemical data, these facts permit the assignment of 150 and 156 kcal/mole to the lower and upper limits of the proton affinity of monosilane.  相似文献   

14.
Energy dispersive X-ray diffraction (EDXRD) has been used to perform in-situ kinetic studies on the intercalation of a range of guest molecules in layered lattices. The kinetics of the intercalation of cations {K+, PyH+ (Py = C5H5N), NMe+4} and the long chain ammonium ions C12TMA, C16TMA, C18TMA (C12TMA = dodecyltrimethylammonium, C16TMA = hexadecyltrimethylammonium and C18TMA = octadecyltrimethylammonium) into crystals of MnPS3 have been determined. These reactions are very fast and in some cases novel transient phases are observed. The rate of cobaltocene, Co(η-C5H5)2, intercalation in layered dichalcogenides ZrS2, 2H-SnS2, 2H-SnSe2, 2H-TaS2, 2H-NbS3, 1T-TaS2 and TiS2 has also been investigated. Integrated intensities of the Bragg reflections have been used to determine the extent of reaction, (α), versus time for each of these reactions. A number of kinetic models have been considered, including the Avrami-Erofeyev (m = 1.5) deceleratory nuclei-growth model and statistical simulation. The concentration and solvent dependence of the rate of Co(η-C5H5)2 intercalation into 2H-SnS2 has also been determined. Surprisingly we find that the rate of intercalation is invariant to the initial Co(η-C5H5)2 concentration over a wide concentration range.  相似文献   

15.
Hydrogen/deuterium (H/D) exchange reactions of fluorophenyl and difluorophenyl anions (C6H4F?, o-C6H3F 2 ? , m-C6H3F 2 ? , p-C6H3F 2 ? ) have been studied using the flowing afterglow-selected ion flow tube technique. The C6H4F? anion exchanges all hydrogens for deuterium upon reaction with D2O. The difluorophenyl anions o-, m-, and p-C6H3F 2 ? exchange three, two, and one hydrogen, respectively, with D2O, whereas they undergo one, two, and three H/D exchanges, respectively, with CH3OD. The structures of the anions and the isotope exchange dynamics within the intermediate ion-dipole complexes are discussed using ab initio molecular orbital calculations. Calculated values for the proton affinities of the most stable anions are 385.2, 378.0, 371.9, and 378.2 kcal/mol for C6H4F?, o-C6H3F 2 ? , m-C6H3F 2 ? , and p-C6H3F 2 ? , respectively, in excellent agreement (within 2 kcal/mol) with the previous experimental values for the acidities of the corresponding fluorobenzenes. The H/D exchange results are explained by the energy differences of the intermediate DO? and CH3O? species within the ion-dipole complexes; CH3O? is mobile within the “hot” intermediate complex, whereas DO? is nearly “frozen” within the complex and cannot migrate across the barriers caused by the fluorine atoms or by the π electrons.  相似文献   

16.
Structures and energies have been calculated, in the MNDO approximation, for xanthan hydride (C2H2N2S3) and its molecular cation, and for the mass spectral fragment ions H2NCNCS+, HNCNCS+, CS2+, H2N2CS+ (two isomers), HN2CS+, S2+, H2NCS+ (three isomers), HNCS+ (two isomers), H3N2C2+ (four isomers), CS+ and HNCS+2 (two isomers), together with the corresponding neutral fragments.  相似文献   

17.
The structure and fragmentation of eight [C6H13O] + ions formed by protonation of C6H12O carbonyl compounds in the gas phase have been investigated using isotopic labeling and metastable ion studies to investigate the fragmentation reactions and collisional dissociation studies to probe ion structures. Protonated 3-methyl-2-pentanone and protonated 2-methyl-3-pentanone readily-interconvert by pinacolic-retro-pinacolic rearrangements; the remaining six ions represent stable ion structures, although in many cases fragmentation is preceded by pinacolic-type rearrangements. Unimolecular (metastable ion) fragmentation of the [C6H13O] + species occurs by elimination of H2O, C3H6, C4H8 and C2H4O. The last three elimination reactions appear to occur through the intermediacy of a proton-bound complex of a carbonyl compound and an olefin, with the proton residing with the species of higher proton affinity on decomposition of the complex.  相似文献   

18.
The diastereoselective κ2-P,N-coordination of a chiral tricyclic β-iminophosphine ligand to the half-sandwich ruthenium(II) fragments [RuCl(η6-arene)]+ (arene = C6H6, p-cymene, 1,3,5-C6H3Me3, C6Me6), [Ru(η6-p-cymene)(NCMe)]2+ and [Ru(η5-C5H5)(NCMe)]+ is described. The structures of the resulting mono- and dicationic cymene derivatives have been confirmed by X-ray crystallography. Studies on the catalytic activity of these Ru(II) compounds in Diels–Alder cycloaddition processes are also reported.  相似文献   

19.
Guoqi Liu  Fuhui Liao 《Acta Physico》2008,24(11):1945-1949
A new compound dicetyltrimethylammonium hexafluorotitanium dihydrate, [(n-C16H33)N(CH3)3]2[TiF6]·2H2O (compound 1), was hydrothermally synthesized at 150 °C and characterized by single crystal X-ray diffraction, Fourier-transform infrared (FTIR) spectroscopy, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in the monoclinic system, space group C2/c. It consists of hexafluorotitanium cations [TiF6]2−, water molecular (H2O), and cetyltrimethylammonium ions [(n-C16H33)N(CH3)3]+, which are connected together by extensive hydrogen bonding.  相似文献   

20.
We have determined the differences in the parameters log A and E of the Arrhenius equations for the kinetic isotope effect (KIE) (c-C6H12/c-C6D12) and the 5/6 effect (c-C5H10/c-C6H12) in reactions of the C—H bonds of cycloalkanes with adamantyl (Ad+) carbocations (1-adamantanol in 92.8% H2SO4, 40-97 °C). We have established the compensation relations between log A and E for the kinetic isotope effect and the 5/6 effect for anthracene (AH+), hydroxymethyl (CH2OH+), Ad+ carbocations and the hypothetical "infinitely strong reagent," supporting a hydride transfer mechanism in such reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号