首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grand canonical Monte Carlo simulations of argon, hydrogen, and methane adsorption in four covalent organic frameworks are presented. Argon adsorption isotherms from computer simulations overestimate the amount adsorbed by 25% upon saturation, with respect to the available experiments at T = 87 K. Hydrogen adsorption isotherms show that these materials might attain a 30% increase for the uptake when compared with analogous simulations performed for metal organic frameworks at T = 77 K and T = 298 K. Methane adsorption isotherms give a strong indication that at least one material in this class, COF-102, could meet or exceed the Department of Energy's target of 180 cm3 (STP)/cm3 for P = 35 bar and room temperature. The origin of this large affinity for methane is investigated by analyzing the structure of the potential energy surface of interaction between the adsorbate and the adsorbent.  相似文献   

2.
Covalent organic frameworks as exceptional hydrogen storage materials   总被引:3,自引:0,他引:3  
We report the H2 uptake properties of six covalent organic frameworks (COFs) from first-principles-based grand canonical Monte-Carlo simulations. The predicted H2 adsorption isotherm is in excellent agreement with the only available experimental result (3.3 vs 3.4 wt % at 50 bar and 77 K for COF-5), also reported here, validating the predictions. We predict that COF-105 and COF-108 lead to a reversible excess H2 uptake of 10.0 wt % at 77 K, making them the best known storage materials for molecular hydrogen at 77 K. We predict that the total H2 uptake for COF-108 is 18.9 wt % at 77 K. COF-102 shows the best volumetric performance, storing 40.4 g/L of H2 at 77 K. These results indicate that the COF systems are most promising candidates for practical hydrogen storage.  相似文献   

3.
The hydrogen adsorption properties and uptake capacities of the A, X and ZSM-5 types of zeolites were investigated at temperatures of 77, 195 and 293 K and pressures up to 7MPa, using a conventional volumetric adsorption apparatus. All hydrogen adsorption isotherms were basically type I, but the maximum in isotherm,a unique feature of supercritical adsorption, was observed at high pressures of 2-5 MPa at 77 K. The isosteric heats of adsorption were determined from the isotherms and the factors that influence their variations were discussed. Different types of zeolites exhibited remarkably different hydrogen uptake, based on both the framework structure and the nature of the cations present. The highest gravimetric storage capacity of 2.55wt% was obtained for NaX-type zeolite at 4 MPa and 77 K. In CaA, NaX and ZSM-5 types of zeolites,hydrogen uptakes were proportional to the specific surface areas, which were associated with the available void volumes of the zeolites. A threshold in hydrogen adsorption observed in NaA and KA was attributed to a pore blocking effect by large cations in KA. A ratio of the kinetic diameter of adsorbate to the effective opening diameter of zeolite was used to judge the blocking effect for physisorption.  相似文献   

4.
A low-temperature gas sorption study has been carried out on four three-dimensional microporous metal organic framework (MMOF) structures and two two-dimensional layered structures. The pore characteristics are analyzed based on the argon adsorption-desorption isotherms at 87 K. The results from hydrogen sorption experiments conducted at 77 and 87 K show that all MMOFs have a relatively high hydrogen uptake, with adsorbed hydrogen densities falling in the range of liquid hydrogen. Isosteric heats of hydrogen adsorption data calculated based on the Clausius-Clapeyron equation are consistent with these observations, indicating strong sorbent-sorbate interactions.  相似文献   

5.
Grand canonical Monte Carlo simulations were performed to predict adsorption isotherms for hydrogen in a series of 10 isoreticular metal-organic frameworks (IRMOFs). The results show acceptable agreement with the limited experimental results from the literature. The effects of surface area, free volume, and heat of adsorption on hydrogen uptake were investigated by performing simulations over a wide range of pressures on this set of materials, which all have the same framework topology and surface chemistry but varying pore sizes. The results reveal the existence of three adsorption regimes: at low pressure (loading), hydrogen uptake correlates with the heat of adsorption; at intermediate pressure, uptake correlates with the surface area; and at the highest pressures, uptake correlates with the free volume. The accessible surface area and free volume, calculated from the crystal structures, were also used to estimate the potential of these materials to meet gravimetric and volumetric targets for hydrogen storage in IRMOFs.  相似文献   

6.
We designed, synthesized, and characterized a new Zr‐based metal–organic framework material, NU‐1100 , with a pore volume of 1.53 ccg?1 and Brunauer–Emmett–Teller (BET) surface area of 4020 m2g?1; to our knowledge, currently the highest published for Zr‐based MOFs. CH4/CO2/H2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 g g?1, which corresponds to 43 g L?1. The volumetric and gravimetric methane‐storage capacities at 65 bar and 298 K are approximately 180 vSTP/v and 0.27 g g?1, respectively.  相似文献   

7.
Templated microporous carbons were synthesized from metal impregnated zeolite Y templates. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to characterize morphology and structure of the generated carbon materials. The surface area, micro- and meso-pore volumes, as well as the pore size distribution of all the carbon materials were determined by N2 adsorption at 77 K and correlated to their hydrogen storage capacity. All the hydrogen adsorption isotherms were Type 1 and reversible, indicating physisorption at 77 K. Most templated carbons show good hydrogen storage with the best sample Rh-C having surface area 1817 m2/g and micropore volume 1.04 cm3/g, achieving the highest as 8.8 mmol/g hydrogen storage capacity at 77 K, 1 bar. Comparison between activated carbons and synthesized templated carbons revealed that the hydrogen adsorption in the latter carbon samples occurs mainly by pore filling and smaller pores of sizes around 6 Å to 8 Å are filled initially, followed by larger micropores. Overall, hydrogen adsorption was found to be dependent on the micropore volume as well as the pore-size, larger micropore volumes showing higher hydrogen adsorption capacity.  相似文献   

8.
A class of high-surface-area carbon hypothetical structures has been investigated that goes beyond the traditional model of parallel graphene sheets hosting layers of physisorbed hydrogen in slit-shaped pores of variable width. The investigation focuses on structures with locally planar units (unbounded or bounded fragments of graphene sheets), and variable ratios of in-plane to edge atoms. Adsorption of molecular hydrogen on these structures was studied by performing grand canonical Monte Carlo simulations with appropriately chosen adsorbent-adsorbate interaction potentials. The interaction models were tested by comparing simulated adsorption isotherms with experimental isotherms on a high-performance activated carbon with well-defined pore structure (approximately bimodal pore-size distribution), and remarkable agreement between computed and experimental isotherms was obtained, both for gravimetric excess adsorption and for gravimetric storage capacity. From this analysis and the simulations performed on the new structures, a rich spectrum of relationships between structural characteristics of carbons and ensuing hydrogen adsorption (structure-function relationships) emerges: (i) Storage capacities higher than in slit-shaped pores can be obtained by fragmentation/truncation of graphene sheets, which creates surface areas exceeding of 2600 m(2)/g, the maximum surface area for infinite graphene sheets, carried mainly by edge sites; we call the resulting structures open carbon frameworks (OCF). (ii) For OCFs with a ratio of in-plane to edge sites ≈1 and surface areas 3800-6500 m(2)/g, we found record maximum excess adsorption of 75-85 g of H(2)/kg of C at 77 K and record storage capacity of 100-260 g of H(2)/kg of C at 77 K and 100 bar. (iii) The adsorption in structures having large specific surface area built from small polycyclic aromatic hydrocarbons cannot be further increased because their energy of adsorption is low. (iv) Additional increase of hydrogen uptake could potentially be achieved by chemical substitution and/or intercalation of OCF structures, in order to increase the energy of adsorption. We conclude that OCF structures, if synthesized, will give hydrogen uptake at the level required for mobile applications. The conclusions define the physical limits of hydrogen adsorption in carbon-based porous structures.  相似文献   

9.
The Ti‐binding energy and hydrogen adsorption energy of a Ti‐decorated Mg‐based metal–organic framework‐74 (Mg‐MOF‐74) were evaluated by using first‐principles calculations. Our results revealed that only three Ti adsorption sites were found to be stable. The adsorption site near the metal oxide unit is the most stable. To investigate the hydrogen‐adsorption properties of Ti‐functionalized Mg‐MOF‐74, the hydrogen‐binding energy was determined. For the most stable Ti adsorption site, we found that the hydrogen adsorption energy ranged from 0.26 to 0.48 eV H2?1. This is within the desirable range for practical hydrogen‐storage applications. Moreover, the hydrogen capacity was determined by using ab initio molecular dynamics simulations. Our results revealed that the hydrogen uptake by Ti‐decorated Mg‐MOF‐74 at temperatures of 77, 150, and 298 K and ambient pressure were 1.81, 1.74, and 1.29 H2 wt %, respectively.  相似文献   

10.
氢气在单壁碳纳米管束的吸附的密度泛函研究   总被引:5,自引:2,他引:3  
张现仁  汪文川 《化学学报》2002,60(8):1396-1404
作者利用密度泛函理论(DFT)计算了氢气在单壁碳纳米管束(SWNTs)中管内 和管间的吸附。考察了温度,孔径以及压力对吸附的分子数密度,重量百分比,单 位体积储存能力以及超额吸附量的影响。DFT计算发现,较大的孔径有利于氢气在 SWNTs中的吸附且氢气在管隙中的吸附不可忽略。计算表明在77 K和6 MPa时,氢气 在2.719 mm的SWNTs的总的吸附的重量百分比分别可达到13.2 wt%,这约是美国能 源部(DOE)目标值的两倍,而单位体积储存能力在DOE目标值附近,而在300 K和 6 MPa时,氢气在2.719 nm的SWNTs的总的吸附的重量百分比仅为1.5 wt%。通过实 验结果与计算结果的比较表明,密度泛函理论的计算结果支持SWNTs有较高的吸附 储氢能力的实验结论。  相似文献   

11.
Hydrogen adsorption isotherms were measured both at cryogenic temperatures below 1 atm and at ambient temperature at high pressures, up to 90 atm, on selected porous carbons with various pore structures. The nonlocal density functional theory (NLDFT) model was used to calculate the pore size distributions (PSDs) of the carbons, from H2 adsorption isotherms measured at 77 K, and then to predict H2 adsorption on these carbons at 87 and 298 K. An excellent agreement between the predicted and measured data was obtained. Prior to analyzing the porous carbons, the solid-fluid interaction parameters used in the NLDFT model were derived from H2 adsorption data measured at 77 K on nonporous carbon black. The results show that the NLDFT model with appropriate parameters may be a useful tool for optimizing carbon pore structures and designing adsorption systems for hydrogen storage applications.  相似文献   

12.
基于PAF-301分子模型通过Li掺杂或B取代等模式设计了几种新型多孔芳香骨架(PAFs)材料,采用量子力学和分子力学方法对新材料的储氢性能进行研究.由量子力学计算得到了不同分子片段与H2之间的结合能,并结合DDEC方法计算了各分子片段的原子电荷分布.利用巨正则蒙特卡洛(GCMC)模拟方法计算了77和298 K下H2在不同PAFs材料中的吸附平衡性质.结果表明,H2直接与苯环的结合能较低,但掺杂Li原子能够提高H2与六元环的结合能,同时Li原子体现出较高的正电性质,B原子取代苯环中的两个C原子后,使得原有C原子电负性增强;77 K下PAF-301Li具有最高的储氢性能,而PAF-C4B2H4-Li2-Si和PAF-C4B2H4-Li2-Ge体现出较好的常温储氢性能,各种材料的常温储氢性能远低于其低温储氢性能.通过77 K下H2在PAFs材料中的等位能面分布和吸附平衡质心密度分布对H2在PAFs材料中的优先吸附位置进行分析,发现在PAF-301和PAF-301Li骨架中,由于中心能量较低的等位能区域范围较宽,H2在其中存在四个明显的吸附高密度分布区域,而其它三种PAFs晶胞中心能量较低的等位能区域范围较窄,使得H2在其中只存在两个明显的吸附高密度分布区域.  相似文献   

13.
Hydrogen is the ideal fuel because it contains the most energy per gram of any chemical substance and forms water as the only byproduct of consumption. However, storage still remains a formidable challenge because of the thermodynamic and kinetic issues encountered when binding hydrogen to a carrier. In this study, we demonstrate how the principal binding sites in a new class of hydrogen storage materials based on the Kubas interaction can be tuned by variation of the coordination sphere about the metal to dramatically increase the binding enthalpies and performance, while also avoiding the shortcomings of hydrides and physisorpion materials, which have dominated most research to date. This was accomplished through hydrogenation of chromium alkyl hydrazide gels, synthesized from bis(trimethylsilylmethyl) chromium and hydrazine, to form materials with low-coordinate Cr hydride centers as the principal H(2) binding sites, thus exploiting the fact that metal hydrides form stronger Kubas interactions than the corresponding metal alkyls. This led to up to a 6-fold increase in storage capacity at room temperature. The material with the highest capacity has an excess reversible storage of 3.23 wt % at 298 K and 170 bar without saturation, corresponding to 40.8 kg H(2)/m(3), comparable to the 2015 DOE system goal for volumetric density (40 kg/m(3)) at a safe operating pressure. These materials possess linear isotherms and enthalpies that rise on coverage, retain up to 100% of their adsorption capacities on warming from 77 to 298 K, and have no kinetic barrier to adsorption or desorption. In a practical system, these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in the majority of hydrogen test vehicles, to dramatically increase the amount of hydrogen stored, and therefore range of any vehicle.  相似文献   

14.
Monte Carlo simulations and Widom's test particle insertion method have been used to calculate the solubility coefficients (S) and the adsorption equilibrium constants (K) in single-walled (10,10) armchair carbon nanotubes including single nanotubes, and nanotube bundles with various configurations with and without alkali dopants. The hydrogen adsorption isotherms at room temperature were predicted by following the Langmuir adsorption model using the calculated constants S and K. The simulation results were in good agreement with experimental data as well as the grand canonical Monte Carlo simulation results reported in the literature. The simulations of nanotube bundle configurations suggest that the gravimetric hydrogen adsorption increases with internanotube gap size. It may be attributed to favorable hydrogen-nanotube interactions outside the nanotubes. The effect of alkali doping on hydrogen adsorption was studied by incorporating K+ or Li+ ions into nanotube arrays using a Monte Carlo simulation. The results on hydrogen adsorption isotherms indicate hydrogen adsorption of 3.95 wt% for K-doping, and 4.21 wt% for Li-doping, in reasonable agreement with the experimental results obtained at 100 atm and room temperature.  相似文献   

15.
The volumetric hydrogen adsorption isotherms of two isostructural dehydrated cubic metal nitroprussides M[Fe(CN)5NO] (M = Co2+, Ni2+) have been measured up to a pressure of 760 Torr at 77 and 87 K. These materials are among the most efficient H2 sorbents based on porous coordination polymers reported to date. The H2 uptake in both materials is approximately 1.6 wt % at 77 K and 760 torr. These H2 capacities match those reported recently in the structurally related M3[Co(CN)6]2 compounds and are approximately 25% higher than those reported for Zn4O(1,4-benzenedicarboxylate)3 under the same conditions of temperature and pressure. The isosteric heats of H2 adsorption calculated from the 77 and 87 K isotherms for both materials were found to vary from approximately 7.5 kJ/mol at 0.40 wt % coverage to approximately 5.5 kJ/mol at 1.2 wt % coverage. The N2 BET surface areas were determined to be 634 m2/g and 523 m2/g for M = Ni and M = Co, respectively.  相似文献   

16.
Hydrogen in slit-like carbon nanopores at 77 K represents a quantum fluid in strong confinement. We have used path-integral grand canonical Monte Carlo and classical grand canonical Monte Carlo simulations for the investigation of the "quantumness" of hydrogen at 77 K adsorbed in slit-like carbon nanopores up to 1 MPa. We find that classical simulations overpredict the hydrogen uptake in carbon nanopores due to neglect of the quantum delocalization. Such disagreement of both simulation methods depends on the slit-like carbon pore size. However, the differences between the final uptakes of hydrogen computed from both classical and quantum simulations are not large due to a similar effective size of quantum/classical hydrogen molecules in carbon nanospaces. For both types of molecular simulations, the volumetric density of stored energy in optimal carbon nanopores exceeds 6.4 MJ dm(-3) (i.e., 45 kg m(-3); Department of Energy target for 2010). In contrast to the hydrogen adsorption isotherms, we found a large reduction of isosteric enthalpy of adsorption computed from the quantum Feynman's path-integral simulations in comparison to the classical values at 77 K and pressures up to 1 MPa. Depression of the quantum isosteric enthalpy of adsorption depends on the slit-like carbon pore size. For the narrow pores (pore width H in [0.59-0.7] nm), the reduction of the quantum isosteric enthalpy of adsorption at zero coverage is around 50% in comparison to the classical one. We observed new phenomena called, by us, the quantum confinement-inducing polymer shrinking. In carbon nanospaces, the quantum cyclic polymers shrink, in comparison to its bulk-phase counterpart, due to a strong confinement effect. At considered storage conditions, this complex phenomenon depends on the size of the slit-like carbon nanopore and the density of hydrogen volumetric energy. For the smallest nanopores and a low density of hydrogen volumetric energy, the reduction of the polymer effective size is the highest, whereas an increase of the pore size and the density of hydrogen volumetric energy causes the polymer swelling up to a value slightly below the one computed from the bulk phase. Quantum confinement-inducing polymer shrinking is of great importance for realizing the potential of quantum molecular sieves.  相似文献   

17.
Reaction of Co(CF3SO3)2 with the new molecule 1,4-benzenedi(4'-pyrazolyl) (H2BDP) in N,N'-diethylformamide (DEF) at 130 degrees C generates the metal-organic framework Co(BDP).2DEF.H2O (1). X-ray analysis reveals the structure of 1 to contain chains of tetrahedrally ligated Co2+ ions linked through BDP2- ligands to generate a three-dimensional framework with 10 x 10 A2 channels. Thermogravimetric data shows the framework to have a high thermal stability, and complete desolvation occurs upon heating at 170 degrees C under dynamic vacuum for two days to afford 1d. X-ray powder diffraction data indicates that 1d possesses a substantially different structure, but converts back to 1 upon exposure to DEF, consistent with the presence of a flexible framework. Nitrogen adsorption isotherms measured for 1d at 77 and 87 K reveal an unprecedented five-step adsorption process and a Langmuir surface area of 2670 m2/g. In addition, high-pressure H2 adsorption data reveal hysteretic uptake and release, with hysteresis loops of width 1.1, 3.8, 13, and 27 bar that shift to higher pressures as the temperature increases from 50 to 65, 77, and 87 K, respectively. The high H2 uptake capacity of 5.5 excess wt % at 50 K suggests that such materials could potentially find utility for hydrogen storage via a kinetic trapping mechanism. Variable-temperature kinetics measurements have also allowed the first study of H2 diffusion within a metal-organic framework, revealing an energy barrier of 0.62 kJ/mol for H2 diffusing within the pores.  相似文献   

18.
Hydrogen adsorption on functionalized nanoporous activated carbons   总被引:2,自引:0,他引:2  
There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.  相似文献   

19.
We have recently highlighted that H-SSZ-13, a highly siliceous zeolite (Si/Al = 11.6) with a chabazitic framework, is the most efficient zeolitic material for hydrogen storage [A. Zecchina, S. Bordiga, J. G. Vitillo, G. Ricchiardi, C. Lamberti, G. Spoto, M. Bj?rgen and K. P. Lillerud, J. Am. Chem. Soc., 2005, 127, 6361]. The aim of this new study is thus to clarify both the role played by the acidic strength and by the density of the polarizing centers hosted in the same framework topology in the increase of the adsorptive capabilities of the chabazitic materials towards H2. To achieve this goal, the volumetric experiments of H2 uptake (performed at 77 K) and the transmission IR experiment of H2 adsorption at 15 K have been performed on H-SSZ-13, H-SAPO-34 (the isostructural silico-aluminophosphate material with the same Br?nsted site density) and H-CHA (the standard chabazite zeolite: Si/Al = 2.1) materials. We have found that a H2 uptake improvement has been obtained by increasing the acidic strength of the Br?nsted sites (moving from H-SAPO-34 to H-SSZ-13). Conversely, the important increase of the Br?nsted sites density (moving from H-SSZ-13 to H-CHA) has played a negative role. This unexpected behavior has been explained as follows. The additional Br?nsted sites are in mutual interaction via H-bonds inside the small cages of the chabazitic framework and for most of them the energetic cost needed to displace the adjacent OH ligand is higher than the adsorption enthalpy of the OH...H2 adduct. From our work it can be concluded that proton exchanged chabazitic frameworks represent, among zeolites, the most efficient materials for hydrogen storage. We have shown that a proper balance between available space (volume accessible to hydrogen), high contact surface, and specific interaction with strong and isolated polarizing centers are the necessary characteristics requested to design better materials for molecular H2 storage.  相似文献   

20.
The isosteric enthalpy of adsorption for neopentane at relative pressures down to 3 × 10(-8) in MCM-41 was predicted for the temperature range from -15 to 0 °C. At such low pressures and temperatures, experimental measurements become problematic for this system. We used an atomistic model for MCM-41 obtained by means of a kinetic Monte Carlo method mimicking the synthesis of the material. The model was parametrized to represent experimental nitrogen adsorption isotherms at 77 K using grand canonical Monte Carlo simulations. The simulated isosteric enthalpy of adsorption shows very good agreement with available experimental data, demonstrating that GCMC simulations can predict heats of adsorption for conditions that are challenging for experimental measurements. Additional insights into the adsorption mechanisms, derived from energetic analysis at the molecular level, are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号