首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Grand Canonical Monte Carlo study has been performed in order to compare the different CO2 adsorption mechanisms between two members of the MIL-n family of hybrid metal-organic framework materials. The MIL-53 (Al) and MIL-47 (V) systems were considered. The results obtained confirm that there is a structural interchange between a large pore and narrow pore forms of MIL-53 (Al), not seen with the MIL-47 (V) material, which is a consequence of the presence of μ 2-OH groups. The interactions between the CO2 molecules and these μ 2 OH groups mainly govern the adsorption mechanism in this MIL-53 (Al) material. The subsequent breaking of these adsorption geometries after the adsorbate loading increases past the point where no more preferred adsorption sites are available, are proposed as key features of the breathing phenomenon. After this, any new adsorbates introduced into the MIL-53 (Al) large pore structure experience a homogeneous adsorption environment with no preferential adsorption sites in a similar way to what occurs in MIL-47 (V).  相似文献   

2.
Adsorption study of acetic acid on ice surfaces was performed by combining experimental and theoretical approaches. The experiments were conducted between 193 and 223 K using a coated wall flow tube coupled to a mass spectrometric detection. Under our experimental conditions, acetic acid was mainly dimerized in the gas phase. The surface coverage increases with decreasing temperature and with increasing concentrations of acetic acid dimers. The obtained experimental surface coverages were fitted according to the BET theory in order to determine the enthalpy of adsorption deltaH(ads) and the mololayer capacity N(M(dimers)) of the acetic acid dimers on ice: deltaH(ads) = (-33.5 +/- 4.2) kJ mol(-1), N(M(dimers)) = (l1.27 +/- 0.25) x 10(14) dimers cm(-2). The adsorption characteristics of acetic acid on an ideal ice I(n)(0001) surface were also studied by means of classical molecular dynamics simulations in the same temperature range. The monolayer capacity, the configurations of the molecules in their adsorption sites, and the corresponding adsorption energies have been determined for both acetic acid monomers and dimers, and compared to the corresponding data obtained from the experiments. In addition, the theoretical results show that the interaction with the ice surface could be strong enough to break the acetic acid dimers that exist in the gas phase and leads to the stabilization of acetic acid monomers on ice.  相似文献   

3.
This paper reports the development and testing of atomistic models of silica MCM-41 pores. Model A is a regular cylindrical pore having a constant section. Model B has a surface disorder that reproduces the morphological features of a pore obtained from an on-lattice simulation that mimics the synthesis process of MCM-41 materials. Both models are generated using a similar procedure, which consists of carving the pore out of an atomistic silica block. The differences between the two models are analyzed in terms of small angle neutron scattering spectra as well as adsorption isotherms and isosteric heat curves for Ar at 87 K and Xe at 195 K. As expected for capillary condensation in regular nanopores, the Ar and Xe adsorption/desorption cycles for model A exhibit a large hysteresis loop having a symmetrical shape, i.e., with parallel adsorption and desorption branches. The features of the adsorption isotherms for model B strongly depart from those observed for model A. Both the Ar and Xe adsorption branches for model B correspond to a quasicontinuous pore filling that involves coexistence within the pore of liquid bridges and gas nanobubbles. As in the case of model A, the Ar adsorption isotherm for model B exhibits a significant hysteresis loop; however, the shape of the loop is asymmetrical with a desorption branch much steeper than the adsorption branch. In contrast, the adsorption/desorption cycle for Xe in model B is quasicontinuous and quasireversible. Comparison with adsorption and neutron scattering experiments suggests that model B is too rough at the molecular scale but reproduces reasonably the surface disorder of real MCM-41 at larger length scales. In contrast, model A is smooth at small length scales in agreement with experiments but seems to be too ordered at larger length scales.  相似文献   

4.
Physisorption on metal surfaces, and the tunneling currents through the adsorbed species, are calculated using a unified formalism that presents both problems on the same footing. Our method is based on a self-consistent LCAO approach whereby the different interaction parameters defining the bonds, and the tunneling currents, are calculated using the atomic properties of the atomic species forming the interface. Green function methods and the Keldish formalism are used to calculate the different physical properties. We present results for xenon adsorbed on aluminum.  相似文献   

5.
We showed water adsorption isotherms at 303 K on water-resistant three-dimensional (3-D) pillared-layer metal organic frameworks (MOFs) with 1-D semi-rectangular pores, of which size depends on the length of ligand. The shapes of all three adsorption isotherms are type I by IUPAC classification showing strong water-MOFs interaction. The adsorbed amount of water molecules on the hydrophilic site of carboxylic group in 2-D sheets coincided with the crystal water amount. The adsorption on the hydrophilic sites occurs at similar relative pressure even if the used ligand is different.  相似文献   

6.
The structure and the adsorption characteristics of porous polymeric materials were studied by the methods of X-ray diffraction analysis and adsorption from solutions. The values of the adsorption capacity, the mean pore size, standard decrease in the molar free energy of adsorption, internal diffusion coefficients of nitrobenzene and p-nitroaniline in the primary and secondary porous structures were calculated.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 21, No. 3, pp. 378–381, May–June, 1985.  相似文献   

7.
Metal-organic framework (MOF) materials pose an interesting alternative to more traditional nanoporous materials for a variety of separation processes. Separation processes involving nanoporous materials can be controlled by either adsorption equilibrium, diffusive transport rates, or a combination of these factors. Adsorption equilibrium has been studied for a variety of gases in MOFs, but almost nothing is currently known about molecular diffusion rates in MOFs. We have used equilibrium molecular dynamics (MD) to probe the self-diffusion and transport diffusion of a number of small gas species in several MOFs as a function of pore loading at room temperature. Specifically, we have studied Ar, CH4, CO2, N2, and H2 diffusion in MOF-5. The diffusion of Ar in MOF-2, MOF-3, and Cu-BTC has been assessed in a similar manner. Our results greatly expand the range of MOFs for which data describing molecular diffusion is available. We discuss the prospects for exploiting molecular transport properties in MOFs in practical separation processes and the future role of MD simulations in screening families of MOFs for these processes.  相似文献   

8.
The adsorption of pyridine onto the metal organic framework MIL-101 was investigated by experimental and theoretical methods. The amount of pyridine adsorbed on MIL-101 was extraordinarily large at 20 °C, corresponding to about 950 mg/g of dried MIL-101 and approximately half of the voids being filled. Most of the pyridine that had filled the voids was rapidly removed by evacuation at room temperature, but some of the pyridine was so strongly adsorbed that it was retained even under evacuation at 150 °C. Although IR spectra of the adsorbed pyridine indicated the adsorption of pyridine as pyridinium ions and coordinated pyridine at low temperatures, increasing the adsorption temperature induced partial cleavage of the pyridine rings. The high stabilization energy of pyridine on the coordinative unsaturated sites (CUS) of MIL-101, obtained by theoretical calculation, -103 kJ/mol, supported the strong adsorption of pyridine on the CUS.  相似文献   

9.
Journal of Thermal Analysis and Calorimetry - In this work, we verified the synthesis of a novel sequential interpenetrating polymer network, composed of poly(2-hexyl-ethylacrylate) and...  相似文献   

10.
The electron-phonon coupling is critical in determining the intrinsic charge carrier and exciton transport properties in organic materials. In this study, we consider a Su-Schrieffer-Heeger (SSH) model for molecular crystals, and perform numerical benchmark studies for different strategies of simulating the mixed quantum-classical dynamics. These methods, which differ in the selection of initial conditions and the representation used to solve the time evolution of the quantum carriers, are shown to yield similar equilibrium diffusion properties. A hybrid approach combining molecular dynamics simulations of nuclear motion and quantum-chemical calculations of the electronic Hamiltonian at each geometric configuration appears as an attractive strategy to model charge dynamics in large size systems "on the fly," yet it relies on the assumption that the quantum carriers do not impact the nuclear dynamics. We find that such an approximation systematically results in overestimated charge-carrier mobilities, with the associated error being negligible when the room-temperature mobility exceeds ~4.8 cm(2)∕Vs (~0.14 cm(2)/Vs) in one-dimensional (two-dimensional) crystals.  相似文献   

11.
12.
Advancement in hydrogen storage techniques represents one of the most important areas of today's materials research. While extensive efforts have been made to the existing techniques, there is no viable storage technology capable of meeting the DOE cost and performance targets at the present time. New materials with significantly improved hydrogen adsorption capability are needed. Microporous metal coordination materials (MMOM) are promising candidates for use as sorbents in hydrogen adsorption. These materials possess physical characteristics similar to those of single-walled carbon nanotubes (SWNTs) but also exhibit a number of improved features. Here, we report a novel MMOM structure and its room-temperature hydrogen adsorption properties.  相似文献   

13.
Porous graphene oxide/chitosan(PGOC) materials were prepared by a unidirectional freeze-drying method.Their porous structure,mechanical property and adsorption for metal ions were investigated.The results show that the incorporation of graphene oxide(GO) significantly increased the compressive strength of the PGOC materials.The saturated adsorption capacity of Pb2+ increased about 31%,up to 99 mg/g when 5 wt%GO was incorporated These biodegradable,nontoxic,efficient PGOC materials will be a potential adsorbent for metal ions in aqueous solution.  相似文献   

14.
We study dynamical properties of ionic species in aqueous solutions of dodecyltrimethylammonium bromide, for several concentrations below and above the critical micellar concentration (cmc). New experimental determinations of the electrical conductivity are given which are compared to results obtained from an analytical transport theory; transport coefficients of ions in these solutions above the cmc are also computed from Brownian dynamics simulations. Analytical calculations as well as the simulation treat the solution within the framework of the continuous solvent model. Above the cmc, three ionic species are considered: the monomer surfactant, the micelle and the counterion. The analytical transport theory describes the structural properties of the electrolyte solution within the mean spherical approximation and assumes that the dominant forces which determine the deviations of transport processes from the ideal behavior (i.e., without any interactions between ions) are hydrodynamic interactions and electrostatic relaxation forces. In the simulations, both direct interactions and hydrodynamic interactions between solutes are taken into account. The interaction potential is modeled by pairwise repulsive 1/r(12) interactions and Coulomb interactions. The input parameters of the simulation (radii and self-diffusion coefficients of ions at infinite dilution) are partially obtained from the analytical transport theory which fits the experimental determinations of the electrical conductivity. Both the electrical conductivity of the solution and the self-diffusion coefficients of each species computed from Brownian dynamics are compared to available experimental data. In every case, the influence of hydrodynamic interactions (HIs) on the transport coefficients is investigated. It is shown that HIs are crucial to obtain agreement with experiments. In particular, the self-diffusion coefficient of the micelle, which is the largest and most charged species in the present system, is enhanced when HIs are included whereas the diffusion coefficients of the monomer and the counterion are roughly not influenced by HIs.  相似文献   

15.
During the last years, self-assembled organic nanostructures have been recognized as a proper fundament for several electrical and optical applications. In particular, phenylenes deposited on muscovite mica have turned out to be an outstanding material combination. They tend to align parallel to each other forming needlelike structures. In that way, they provide the key for macroscopic highly polarized emission, waveguiding, and lasing. The resulting anisotropy has been interpreted so far by an induced dipole originating from the muscovite mica substrate. Based on a combined experimental and theoretical approach, we present an alternative growth model being able to explain molecular adsorption on sheet silicates in terms of molecule-surface interactions only. By a comprehensive comparison between experiments and simulations, we demonstrate that geometrical changes in the substrate surface or molecule lead to different molecular adsorption geometries and needle directions which can be predicted by our growth model.  相似文献   

16.
A magnesium-based metal organic framework (MOF), also known as Mg-MOF-74, was successfully synthesized, characterized, and evaluated for adsorption equilibria and kinetics of CO2 and CH4. The Mg-MOF-74 crystals were characterized with scanning electron microscopy for crystal structure, powder X-ray diffraction for phase structure, and nitrogen adsorption for pore textural properties. Adsorption equilibrium and kinetics of CO2 and CH4 on the Mg-MOF-74 adsorbent were measured in a volumetric adsorption unit at 278, 298, and 318 K and pressures up to 1 bar. It was found that the Mg-MOF-74 adsorbent prepared in this work has a median pore width of 10.2 Å, a BET specific surface area of 1174 m2/g, CO2 and CH4 adsorption capacities of 8.61 mmol g?1 (37.8 wt.%) and 1.05 mmol g?1 (1.7 wt.%), respectively, at 298 K and 1 bar. Both CO2 and CH4 adsorption capacities are significantly higher than those of zeolite 13X under similar conditions. The pressure-dependent equilibrium selectivity of CO2 over CH4 (qCO2/qCH4) in the Mg-MOF-74 adsorbent showed a trend similar to that of zeolite 13X and the intrinsic selectivity of Mg-MOF-74 at zero adsorption loading is 283 at 298 K. The initial heats of adsorption of CO2 and CH4 on the Mg-MOF-74 adsorbent were found to be 73.0 and 18.5 kJ mol?1, respectively. The adsorption kinetic measurements suggest that the diffusivities of CO2 and CH4 on Mg-MOF-74 were comparable to those on zeolite 13X. CH4 showed relatively faster adsorption kinetics than CO2 in both adsorbents. The diffusion time constants of CO2 and CH4 in the Mg-MOF-74 adsorbent at 298 K were estimated to be 8.11 × 10?3 and 4.05 × 10?2 s?1, respectively, showing a modest kinetic selectivity of about 5 for the separation CH4 from CO2.  相似文献   

17.

The interaction of xenon with containment barriers can play a crucial role in the detection of underground nuclear explosions. Independent field experiments and laboratory-derived models have observed depressed surface level xenon concentrations and subsequently predicted geological capture rates. This work sought to experimentally verify those predictions by analyzing xenon transport though a two-bulb diffusion apparatus adapted for the study of geologic media. Novel to this work is the timescale over which these experiments were carried out, allowing the system to reach equilibrium, rather than relying on numerical models to treat the equilibrium concentration of each gas as a fit coefficient.

  相似文献   

18.
A combination of experimental and computational studies of adsorption from liquid-phase mixtures of linear alkanes in the zeolite silicalite is presented here. Configurational biased grand canonical Monte Carlo simulations combined with identity-swap moves are used to equilibrate the simulations in reasonable times. Interesting trends observed in experiments have been captured quantitatively by simulations. A siting analysis of the simulation data reveals that, during adsorption from a liquid mixture, shorter alkanes prefer the zigzag channels and longer alkanes concentrate in the straight channels of silicalite.  相似文献   

19.
20.
The photochemistry of small HX·(H(2)O)(n), n = 4 and 5 and X = F, Cl, and Br, clusters has been modeled by means of ab initio-based molecular simulations. The theoretical results were utilized to support our interpretation of photodissociation experiments with hydrogen halides on ice nanoparticles HX·(H(2)O)(n), n ≈ 10(2)-10(3). We have investigated the HX·(H(2)O)(n) photochemistry for three structural types: covalently bound structures (CBS) and acidically dissociated structures in a form of contact ion pair (CIP) and solvent separated pair (SSP). For all structures, we have modeled the electronic absorption spectra using the reflection principle combined with a path integral molecular dynamics (PIMD) estimate of the ground state density. In addition, we have investigated the solvent effect of water on the absorption spectra within the nonequilibrium polarizable continuum model (PCM) scheme. The major conclusion from these calculations is that the spectra for ionic structures CIP and SSP are significantly red-shifted with respect to the spectra of CBS structures. We have also studied the photodynamics of HX·(H(2)O)(n) clusters using the Full Multiple Spawning method. In the CBS structures, the excitation led to almost immediate release of the hydrogen atom with high kinetic energy. The light absorption in ionically dissociated species generates the hydronium radical (H(3)O) and halogen radical (X) within a charge-transfer-to-solvent (CTTS) excitation process. The hydronium radical ultimately decays into a water molecule and hydrogen atom with a characteristic kinetic energy irrespective of the hydrogen halide. We have also investigated the dynamics of an isolated and water-solvated H(3)O radical that we view as a central species in water radiation chemistry. The theoretical findings support the following picture of the HX photochemistry on ice nanoparticles investigated in our molecular beam experiments: HX is acidically dissociated in the ground state on ice nanoparticles, generating the CIP structure, which is then excited by the UV laser light into the CTTS states, followed by the H(3)O radical formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号