首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yabuno  Hiroshi 《Nonlinear dynamics》1997,12(3):263-274
For a parametrically excited Duffing system we propose a bifurcation control method in order to stabilize the trivial steady state in the frequency response and in order to eliminate jump in the force response, by employing a combined linear-plus-nonlinear feedback control. Because the bifurcation of the system is characterized by its modulation equations, we first determine the order of the feedback gain so that the feedback modifies the modulation equations. By theoretically analyzing the modified modulation equations, we show that the unstable region of the trivial steady state can be shifted and the nonlinear character can be changed, by means of the bifurcation control with the above feedback. The shift of the unstable region permits the stabilization of the trivial steady state in the frequency response, and the suppression of the discontinuous bifurcation due to the change of the nonlinear character allows the elimination of the jump in the quasistationary force response. Furthermore, by performing numerical simulations, and by comparing the responses of the uncontrolled system and the controlled one, we clarify that the proposed bifurcation control is available for the stabilization of the trivial steady state in the frequency response and for the reduction of the jump in the nonstationary force response.  相似文献   

2.
Lin  R.  Leng  G.  Lee  H. P. 《Nonlinear dynamics》1997,14(1):1-22
The dynamic behavior of a one-degree-of-freedom, parametrically excited nonlinear system is investigated. The Galerkin method is applied to the principal and fundamental parameteric resonance of the system. The continuation method is used to study the change of harmonic oscillation with respect to the variation of excitation frequency. The numerical stability analysis of the trivial solution is carried out and the stable and unstable regions of the trivial solution are given. They are found to agree with the results obtained by the analytical method of Galerkin. Periodic solutions are traced and the coexistence of multi-periodic solutions is observed With the change of excitation frequency the large amplitude periodic-2 oscillation is found to be in the same closed branch with the small amplitude periodic-2 solution. In addition, the bifurcation pattern of the trivial solution is found to change from subcritical Hopf bifurcation into supercritical Hopf bifurcation with the increase of excitation amplitude. Combined with the conventional numerical integration method, new complex dynamic behavior is detected.  相似文献   

3.
Ji  J. C. 《Nonlinear dynamics》2001,25(4):369-382
It is well known that saddle-node bifurcations can occur in the steady-state response of a forced single-degree-of-freedom (SDOF) nonlinear system in the cases of primary and superharmonic resonances. This discontinuous or catastrophic bifurcation can lead to jump and hysteresis phenomena, where at a certain interval of the control parameter, two stable attractors exist with an unstable one in between. A feedback control law is designed to control the saddle-node bifurcations taking place in the resonance response, thus removing or delaying the occurrence of jump and hysteresis phenomena. The structure of candidate feedback control law is determined by analyzing the eigenvalues of the modulation equations. It is shown that three types of feedback – linear, nonlinear, and a combination of linear and nonlinear – are adequate for the bifurcation control. Finally, numerical simulations are performed to verify the effectiveness of the proposed feedback control.  相似文献   

4.
含三次耦合项的两自由度Duffing系统的共振及混沌行为   总被引:1,自引:0,他引:1  
研究了一类含三次耦合项的两自由度Duffing系统的动力学行为。首先应用多尺度方法近似求解系统的一阶稳态响应。通过讨论系统的主共振和1∶1内共振,分析了三次耦合项对系统响应的影响。随后研究系统随外加周期力强度变化的分岔过程,发现除了常见的倍周期分岔通向混沌外,还存在一种直接由周期运动进入混沌的突发路径。结合对系统的最大Lyapunov指数,相轨图及Poincar啨映射的分析验证了上述结论。  相似文献   

5.
The Chebyshev polynomial approximation is applied to the dynamic response problem of a stochastic Duffing system with bounded random parameters, subject to harmonic excitations. The stochastic Duffing system is first reduced into an equivalent deterministic non-linear one for substitution. Then basic non-linear phenomena, such as stochastic saddle-node bifurcation, stochastic symmetry-breaking bifurcation, stochastic period-doubling bifurcation, coexistence of different kinds of steady-state stochastic responses, and stochastic chaos, are studied by numerical simulations. The main feature of stochastic chaos is explored. The suggested method provides a new approach to stochastic dynamic response problems of some dissipative stochastic systems with polynomial non-linearity.  相似文献   

6.
The dynamical behaviour of a parametrically excited Duffing-van der Pol oscillator under linear-plus-nonlinear state feedback control with a time delay is concerned. By means of the method of averaging together with truncation of Taylor expansions, two slow-flow equations on the amplitude and phase of response were derived for the case of principal parametric resonance. It is shown that the stability condition for the trivial solution is only associated with the linear terms in the original systems besides the amplitude and frequency of parametric excitation. And the trivial solution can be stabilized by appreciate choice of gains and time delay in feedback control. Different from the case of the trivial solution, the stability condition for nontrivial solutions is also associated with nonlinear terms besides linear terms in the original system. It is demonstrated that nontrivial steady state responses may lose their stability by saddle-node (SN) or Hopf bifurcation (HB) as parameters vary. The simulations, obtained by numerically integrating the original system, are in good agreement with the analytical results.  相似文献   

7.
We investigate the parametric resonance of a van der Pol oscillator under state feedback control with a time delay. Using the asymptotic perturbation method, we obtain two slow-flow equations on the amplitude and phase ofthe oscillator. Their fixed points correspond to a periodic motion forthe starting system and we show parametric excitation-response andfrequency-response curves. We analyze the effect of time delay andfeedback gains from the viewpoint of vibration control and use energyconsiderations to study the existence and characteristics of limit cycles of the slow-flow equations. A limit cycle corresponds to a two-periodmodulated motion for the van der Pol oscillator. Analytical results areverified with numerical simulations. In order to exclude the possibilityof quasi-periodic motion and to reduce the amplitude peak of theparametric resonance, we find the appropriate choices for the feedbackgains and the time delay.  相似文献   

8.
The dynamic behaviors of two-degree-of-freedom Duffing system with cubic coupled terms are studied. First, the steady-state responses in principal resonance and internal resonance of the system are analyzed by the multiple scales method. Then, the bifurcation structure is investigated as a function of the strength of the driving force F. In addition to the familiar routes to chaos already encountered in unidimensional Duffing oscillators, this model exhibits symmetry-breaking, period-doubling of both types and a great deal of highly periodic motion and Hopf bifurcation, many of which occur more than once. We explore the chaotic behaviors of our model using three indicators, namely the top Lyapunov exponent, Poincaré cross-section and phase portrait, which are plotted to show the manifestation of coexisting periodic and chaotic attractors.  相似文献   

9.
In this work, bifurcation control using a piezoelectric actuator isimplemented to stabilize the parametric resonance induced in acantilever beam. The piezoelectric actuator is attached to the surfaceof the beam to produce a bending moment in the beam. The dimensionlessequation of motion for the beam with the piezoelectric actuator on itssurface is derived and the modulation equations for the complexamplitude of an approximate solution are obtained using the method ofmultiple scales. We then acquire the bifurcation set that expresses theboundary of the stable and unstable regions. The bifurcation set ischaracterized by the modulation equations. Next, we determine the orderof feedback gains to modify these modulation equations. By actuating thepiezoelectric actuator under the appropriate feedback, bifurcationcontrol is carried out resulting in the shift of the bifurcation set andthe expansion of the stable region. The main characteristic of thestabilization method introduced above is that the work done by thepiezoelectric actuator is zero in the state where the parametricresonance is stabilized. Thus zero power control is realized in such astate. Experimental results show the validity of the proposedstabilization method for the parametric resonance induced in thecantilever beam.  相似文献   

10.
Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams   总被引:2,自引:0,他引:2  
The nonlinear nonplanar response of cantilever inextensional metallic beams to a principal parametric excitation of two of its flexural modes, one in each plane, is investigated. The lowest torsional frequencies of the beams considered are much larger than the frequencies of the excited modes so that the torsional inertia can be neglected. Using this condition as well as the inextensionality condition, we develop a Lagrangian whose variation leads to two integro-partial-differential equations governing the motions of the beams. The method of time-averaged Lagrangian is used to derive four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two interacting modes. These modulation equations exhibit symmetry properties. A pseudo arclength scheme is used to trace the branches of the equilibrium solutions and an investigation of the eigenvalues of the Jacobian matrix is used to assess their stability. The equilibrium solutions experience pitchfork, saddle-node, Hopf, and codimension-2 bifurcations. A detailed bifurcation analysis of the dynamic solutions of the modulation equations is presented. Five branches of dynamic (periodic and chaotic) solutions were found. Two of these branches emerge from two Hopf bifurcations and the other three are isolated. The limit cycles undergo symmetry-breaking, cyclic-fold, and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging and boundary crises.  相似文献   

11.
Nonlinear Normal Modes of a Parametrically Excited Cantilever Beam   总被引:1,自引:0,他引:1  
Yabuno  Hiroshi  Nayfeh  Ali H. 《Nonlinear dynamics》2001,25(1-3):65-77
We investigate theoretically thenonlinear normal modes of a vertical cantilever beam excited by aprincipal parametric resonance. We apply directly the method ofmultiple scales to the governing nonlinear nonautonomousintegral-partial-differential equation and associated boundary conditions.In the absence of damping, it is shown that the system has nonlinear normal modes, as defined by Rosenberg, even in the presence of the parametric excitation.We calculate the spatial correction to the linear mode shapedue to the effects of the inertia and curvature nonlinearities andthe parametric excitation. We compare the result obtained withthe direct approach with that obtained using a single-mode Galerkindiscretization.The deviation between the two predictions increases as the oscillationamplitude increases.  相似文献   

12.
We investigate the dynamics of a system consisting of a simple harmonic oscillator with small nonlinearity, small damping and small parametric forcing in the neighborhood of 2:1 resonance. We assume that the unforced system exhibits the birth of a stable limit cycle as the damping changes sign from positive to negative (a supercritical Hopf bifurcation). Using perturbation methods and numerical integration, we investigate the changes which occur in long-time behavior as the damping parameter is varied. We show that for large positive damping, the origin is stable, whereas for large negative damping a quasi-periodic behavior occurs. These two steady states are connected by a complicated series of bifurcations which occur as the damping is varied.  相似文献   

13.
Yagasaki  K. 《Nonlinear dynamics》1999,18(2):129-158
Applying the higher-order averaging method, we study the periodically forced, standard Duffing oscillator. A package of the computer algebra system, Mathematica, recently developed by the author and a coworker, is improved and used to implement the tedious but necessary computations for application of higher-order averaging. We detect many types of subharmonic, superharmonic and ultra-subharmonic motions and their bifurcations. A theoretical exposition for a previous numerical observation of a superstructure of bifurcation sets is partly given. A numerical example is also presented and the theoretical predictions are compared with the corresponding simulation results.  相似文献   

14.
Zhang  C. Y.  Zhu  C. M.  Lin  Z. Q.  Wu  T. X. 《Nonlinear dynamics》2004,37(1):1-18
The parametrically excited lateral vibration of a mass-loaded string is investigated in this paper. Supposing that the mass at the lower end of the string is subjected to a vertical harmonic excitation and neglecting the higher-order vibration modes, the equation of motion for the mass-loaded string can be represented by a Mathieu's equation with cubic nonlinearity. Based on the stability criterion for Mathieu's equation, the critical conditions inducing parametric resonance are clarified. Theoretical analysis shows that when the natural frequency f s of the string lateral vibration and the vertical excitation frequency f satisfy f s= (n/2)f, n= 1, 2, 3, ..., parametric resonance occurs in the case of no damping. For a damped system, parametric resonance most likely occurs when f is close to 2f s, and depends on the damping of the system and the vertical excitation. The critical excitation has been derived at different frequencies. If the natural frequency of the mass vertical vibration happens to be twice that of the string lateral vibration, the parametric resonance may occur due to a small disturbance. Numerical simulations show that the lateral vibration of the string does not increase infinitely at parametric resonance because the parametric excitation is self-tuned due to the coupling between the vertical and lateral vibrations. Finally, the theoretical results are supported by some experimental work.  相似文献   

15.
Dwivedy  S. K.  Kar  R. C. 《Nonlinear dynamics》1999,20(2):115-130
Two fundamentally different versions of the method of multiple scales (MMS) are currently in use in the study of nonlinear resonance phenomena. While the first version is the widely used reconstitution method, the second version is proposed by Rahman and Burton [1]. Both versions of the second-order MMS are applied to the differential equation obtained for a parametrically excited cantilever beam with a lumped mass at an arbitrary position. The bifurcation and stability of the obtained response show the difference between the two versions. While the Hopf bifurcation phenomena with no jump is found in the case of second-order MMS version I, both jump-up and jump-down phenomena are observed in second-order MMS version II, which closely agree with the experimental findings. The results are compared with those obtained by numerically integrating the original temporal equation.  相似文献   

16.
The problem of suboptimal linear feedback control laws with mean-square criteria for the linear oscillator and the Duffing oscillator under external non-Gaussian excitations is considered. The input process is modeled as a polynomial of a Gaussian process or as a renewal driven impulse process. To determine the suboptimal control, a modified iterative procedure is proposed, where four criteria of statistical linearization are combined with an optimal control strategy. The results indicate that the obtained minima do not depend on the linearization criterion. The nonlinearity tends to reduce this minimum.  相似文献   

17.
含噪双稳杜芬振子矩方程的分岔与随机共振   总被引:2,自引:0,他引:2  
张广军  徐健学  姚宏 《力学学报》2006,38(2):288-293
研究了含噪声的双稳杜芬振子矩方程的分岔与随机共振的关系,并根据它们的关系, 从另 一个角度揭示了随机共振发生的机制. 首先在It?方程的基础上,导出了双稳杜芬振子在白噪声和弱周期信号作用下的矩方程,其次以噪声强度 为分岔参数分析了矩方程的分岔特性,再次分析了矩方程的分岔与双稳杜芬振子随机共振 之间的关系,最后根据该对应关系从另一种观点提出了双稳杜芬振子随机共振的机制,该 机制是由于以噪声强度为分岔参数的矩方程发生了分岔,而分岔使得原系统响应均值的能量分布发生了转移,使能 量向频率等于输入信号频率的分量处集中,使得弱信号得到了放大,随机共振发生了.  相似文献   

18.
A method for controlling nonlinear dynamics and chaos previouslydeveloped by the authors is applied to the classical Duffing oscillator.The method, which consists in choosing the best shape of externalperiodic excitations permitting to avoid the transverse intersection ofthe stable and unstable manifolds of the hilltop saddle, is firstillustrated and then applied by using the Melnikov method foranalytically detecting homoclinic bifurcations. Attention is focused onoptimal excitations with a finite number of superharmonics, because theyare theoretically performant and easy to reproduce. Extensive numericalinvestigations aimed at confirming the theoretical predictions andchecking the effectiveness of the method are performed. In particular,the elimination of the homoclinic tangency and the regularization offractal basins of attraction are numerically verified. The reduction ofthe erosion of the basins of attraction is also investigated in detail,and the paper ends with a study of the effects of control on delayingcross-well chaotic attractors.  相似文献   

19.
Hopf bifurcation exists commonly in time-delay systems. The local dynamics of delayed systems near a Hopf bifurcation is usually investigated by using the center manifold reduction that involves a great deal of tedious symbolic and numerical computation. In this paper, the delayed oscillator of concern is considered as a system slightly perturbed from an undamped oscillator, then as a combination of the averaging technique and the method of Lyapunov's function, the energy analysis concludes that the local dynamics near the Hopf bifurcation can be justified by the averaged power function of the oscillator. The computation is very simple but gives considerable accurate prediction of the local dynamics. As an illustrative example, the local dynamics of a delayed Lienard oscillator is investigated via the present method.  相似文献   

20.
提出一种通过分岔控制改变神经元兴奋性类型的方法.采用一个基于washout滤波器的动态反馈控制实现对一个二维的Hindmarsh-Rose类的模型神经元的分岔动力学控制.这一模型神经元从静息态到峰放电态跨越一个不变圆上鞍结分岔(saddle-node on invariant circle,SNIC),呈现出第一类兴奋性.在该SNIC分岔前所期望的参数值处产生一个Hopf分岔,然后通过选择适当的控制器参数调节Hopf分岔的临界性.这样,模型神经元就呈现为第二类兴奋性,因此神经元兴奋性就从第一类改变成第二类.在这个控制器中,线性控制增益决定着Hopf分岔的位置,而非线性增益决定着Hopf分岔的临界性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号