首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transmission electron microscopy (TEM) and photocurrent (PC) measurements were carried out to investigate the microstructural and excitonic transitions in In0.52Ga0.48As/In0.55Al0.45As multiple quantum wells (MQWs). TEM images showed that high-quality 11-period strain-compensated In0.52Ga0.48As/In0.55Al0.45As MQWs had high-quality heterointerfaces. Based on the TEM results, a possible crystal structure for the In0.52Ga0.48As/In0.55Al0.45As MQWs is presented, and their strains are compensated. The results for the PC data at 300 K for several applied electric fields showed that several excitonic transitions shifted to longer wavelengths as the applied electric field increased. These results indicate that the strain-compensated In0.52Ga0.48As/In0.55Al0.45As MQWs hold promise for electroabsorption modulator devices.  相似文献   

2.
报道了调制掺杂的应变In0.60Ga0.40As/In0.52Al0.48As多量子阱中室温光致发光光谱.观察到n=1和2电子子带到n=1重空穴子带的强发光峰.在低温下可以观察到n=1电子子带到n=1轻空穴弱发光肩胛.通过对发光强度随激发功率及温度依赖关系以及理论模型的分析研究,认为该调制掺杂量子阱中辐射复合效率降低的主要机制是应变失配位错对载流子的陷阱作用.界面上的失配位错是陷阱的主要来源.并用静态的光致发光理论模型 关键词:  相似文献   

3.
InxGa1-xAs缓冲层上生长InyGa1-yAs/GaAs超晶格(x<y).阱层处于压缩应变,垒层处于伸张应变,其厚度均小于Mathews-Blakeslee(M-B)平衡理论计算的临界厚度.透射电子显微镜及俄歇电子能谱、二级离子质谱测试发现,GaAs/InyGa1-yAs界面铟组分过渡区比InyGa1-yAs/GaAs界面铟组 关键词:  相似文献   

4.
The paper presents the photoluminescence (PL) study of InAs quantum dots (QDs) embedded in the asymmetric GaAs/InxGa1?xAs/In0.15Ga0.85As/GaAs quantum wells (QWs) with the different compositions of capping InxGa1?xAs layers. The composition of the buffer In0.15Ga0.85As layer was the same in all studied QD structures, but the In content (parameter x) in the capping InxGa1?xAs layers varied within the range 0.10–0.25. The In concentration (x) increase in the InxGa1?xAs capping layers is accompanied by the variation non-monotonously of InAs QD emission: PL intensity and peak positions. To understand the reasons of PL variation, the PL temperature dependences and X ray diffraction (XRD) have been investigated. It was revealed that the level of elastic deformation (elastic strain) and the Ga/In interdiffusion at the InxGa1?xAs/InAs QD interface are characterized by the non-monotonous dependences versus parameter x. The physical reasons for the non-monotonous variation of the elastic strains and PL parameters in studied QD structures have been discussed.  相似文献   

5.
Transmission electron microscopy (TEM) and photocurrent (PC) measurements were carried out to investigate the microstructural properties and excitonic transitions in InxGa1−xAs/In0.52Al0.48As multiple quantum wells (MQWs) for x = 0.54, 0.57 and 0.60. TEM images showed that high-quality 11-period InxGa1−xAs/In0.52Al0.48As MQWs had high-quality heterointerfaces. The results for the PC spectra at 300 K showed that the peaks corresponding to the excitonic transitions from the ground state electronic sub-band to the ground state heavy-hole band (E1-HH1) and the ground state electronic sub-band to the ground state light-hole band (E1-LH1) became closer to each other with decreasing In mole fraction and that E1-HH1 and E1-LH1 excitonic peaks shifted to longer wavelength with increasing applied electric field. The calculated values of the E1-HH1 interband transition energies were in qualitative agreement with those obtained form the PC measurements with and without applied electric field. These results can be helpful in understanding potential applications of InxGa1−xAs/InyAl1−yAs MQWs dependent on In mole fraction and applied electric field in long-wavelength optoelectronic devices.  相似文献   

6.
The influence of the InGaAs capping layer on the intermixing behavior of dielectric-capped In0.53Ga0.47 As/In0.81Ga0.19As0.37P0.63 multiple quantum wells (MQWs) was investigated by measuring the change in the photoluminescence spectra after rapid thermal annealing. The magnitude of the energy shift in the transition energy from the first electronic sub-band to the first heavy- and light-hole sub-bands of the MQWs is large when SiO2 and InGaAs hybrid capping layers are employed, but it is rather small when Si3N4 and InGaAs hybrid capping layers are employed. This result indicates that the InGaAs capping layer holds promise for applications involved in the fabrication of integrated photonic devices, but only when it is incorporated with the SiO2 capping layer. The reason why the InGaAs capping layer behaves differently under the SiO2 and Si3N4 capping layers is also discussed. Received: 4 December 1999 / Accepted: 26 September 2000 / Published online: 10 January 2001  相似文献   

7.
《Current Applied Physics》2019,19(5):557-562
Influence of Ga(Al)As substrates on surface morphology of InGaAs quantum dots and critical thickness of In0.5Ga0.5As film grown by molecular beam epitaxy is investigated. The In0.5Ga0.5As quantum dots are grown on (001) surfaces of GaAs and Al0.25Ga0.75 A at 450 °C, scanning tunneling microscope images show that the size of quantum dots varied slightly for 10 ML of In0.5Ga0.5As grown on GaAs and Al0.25Ga0.75As surfaces. Reflection high energy electron diffraction (RHEED) is used to monitor the growth of 4 monolayers (ML) In0.5Ga0.5As on Al0.25Ga0.75As and GaAs surfaces during deposition. The critical thickness is theoretically calculated by adding energy caused by surface roughness and heat from substrate. The calculations show that the critical thickness of In0.5Ga0.5As grown on GaAs and Al0.25Ga0.75As are 3.2 ML and 3.8 ML, respectively. The theoretical calculation agrees with the experimental results.  相似文献   

8.
Bloch oscillations excited in a strain-balanced InxGa1  xAs/InyGa1  yAs superlattice by fs optical pulses at 1.55 μ m are investigated in time-resolved transmission spectroscopy. The transition from the coherent oscillatory motion to an incoherent drift transport of the electrons is observed via a transient frequency shift of the Bloch oscillations due to the associated screening of the applied electric field. These electric field changes are analyzed quantitatively as a function of the initial field strengths and excitation densities. The incoherent transport can be described by a drift-diffusion model. As a result, the carrier mobility in the superlattice is obtained on a picosecond timescale.  相似文献   

9.
Abstract

Measurements of the photoluminescence (PL) of strained In0.2Ga0.8As/GaAs and In0.15Ga0.85As/GaAs quantum well structures together with the PL from bulk GaAs, in a diamond anvil cell show that the pressure coefficient of the ground confined state in the wells depends upon well width (LZ). In the thinnest wells, the coefficient is closer to that of the bulk GaAs (10.7 meV/kbar), as expected. However, in the widest wells the coefficients tend to values (9.5meV/kbar for the 15% alloy and 9.1meV/kbar for the 20% alloy) that are significantly lower than the pressure coefficient of unstrained In0.53Ga0.47As (10.9meV/kbar). It is found that the low pressure coefficients can not be explained by the change in uniaxial stress with pressure due to a difference in bulk moduli between the barrier and well.  相似文献   

10.
Photoluminescence and cathodoluminescence measurements of strained undoped In0.15Ga0.85As/GaAs and In0.15Ga0.85As/Al0.15Ga0.85As quantum well structures with emission lines attributed to the first electron–first heavy hole and first electron–first light hole excitonic transitions have been analysed theoretically within the eight-band effective mass approximation. For In0.15Ga0.85As/GaAs the results are consistent with either type I or type II alignment of the light hole band. In the case of In0.15Ga0.85As/Al0.15Ga0.85As our results indicate type II alignment for the light hole band and offset ratio ofQ = 0.83.  相似文献   

11.
We report the first demonstration of n-type III–V metal-semiconductor field-effect transistors (nMESFETs) with IV group material hetero-junction source and drain (S/D) technology. A selective epitaxial growth of germanium (Ge) in the recessed gallium arsenide (GaAs) S/D regions is successfully developed using ultra-high vacuum chemical vapor deposition (UHVCVD) system. The dual channel structure includes an additional 10-nm higher mobility n-In0.2Ga0.8As layer on n-GaAs channel and is introduced to further improve the device performance. The n-MESFET, combining embedded-Ge S/D with In0.2Ga0.8As/GaAs channel, exhibits good transfer properties with a drain current on/off ratio of approximately 103. Due to the small barrier height of Ti/In0.2Ga0.8As Schottky contact, a lattice-matched wide bandgap In0.49Ga0.51P dielectric layer is also integrated into the device architecture to build a higher electron Schottky barrier height (SBH) for gate leakage current reduction. The Ti/In0.49Ga0.51P/n-In0.2Ga0.8As Schottky diode shows a comparable leakage level to Ti/n-GaAs with 2 × 10?2 A/cm2 at a gate voltage of ?2.0 V.  相似文献   

12.
The effects of the top barrier and the dot density on photoluminescence (PL) of the InAs quantum dots (QDs) sandwiched by the graded InxGa1−xAs barriers grown by metal-organic vapor phase epitaxy (MOVPE) have been studied. Two emission peaks corresponding to the ground state and the 1st excited state transitions of the QD structures have been observed, which matches well to the theoretical calculation. The PL emission linewidth and intensity of the InAs QDs structure are improved by reducing the Indium/Gallium composition variation of the graded InxGa1−xAs top barrier layer of the structure. The QDs’ ground states filling excitation power depends on the crystal quality of the InGaAs barrier layer and the QD density. The extracted thermal activation energy for the QDs’ PL emission is sensitive to the QD size.  相似文献   

13.
The nonuniformity caused by fluctuations of indium composition, thickness and doping concentration of epitaxial absorption layer of InGaAs focal plane arrays (FPAs) is estimated theoretically with the incorporation of practical status. By the measurements on epitaxy wafers of 2 in. size, the fluctuation of indium composition is observed to be less than ±0.2% and ±1% for lattice matched In0.53Ga0.47As and wavelength extended In0.80Ga0.20As photodetector structures respectively, while the thickness and doping fluctuations are assumed to be the same. Results show that the response nonuniformity caused by fluctuation of indium composition is dependent on the target wavelength and can be neglected with a minor composition fluctuation if the cutoff wavelength is well set. The total response nonuniformity induced by the effects of thickness and doping fluctuations, which dominates the FPA performance for large signal applications, is estimated to be less than ±0.1% and ±0.5% for In0.53Ga0.47As and In0.80Ga0.20As FPAs smaller than 1 in. in maximum side length. Neglecting the effects of defects, the total detectivity nonuniformity caused by these fluctuations is about ±2% for In0.53Ga0.47As FPA and will reach up to about ±19% for In0.80Ga0.20As FPA, where the dark current nonuniformity due to the fluctuation of composition plays the most critical role.  相似文献   

14.
For the first time we have observed quantized conductance in a split gate quantum point contact prepared in a strained In0.77Ga0.23As/InP two-dimensional electron gas (2DEG). Although quantization effects in gated two-dimensional semiconductor structures are theoretically well known and proven in various experiments on AlGaAs/GaAs and also on In0.04Ga0.96As/GaAs, no quantum point contact has been presented in the InGaAs/InP material with an indium fraction as high as 77% so far. The major problem is the comparatively low Schottky barrier of the InGaAs (φB≈ 0.2 eV) making leakage-free gate structures difficult to obtain. Nevertheless this heterostructure—especially with the highest possible indium content—has remarkable properties concerning quantum interference devices and semiconductor/superconductor hybrid devices because of its large phase coherence length and the small depletion zone, respectively. In order to produce leakage-free split gate point contacts the samples were covered with an insulating SiO2layer prior to metal deposition. The gate geometry was defined by electron-beam lithography. In this paper we present first measurements of a point contact on an In0.77Ga0.23As/InP 2DEG clearly showing quantized conductance.  相似文献   

15.
Molecular-Beam Epitaxy growth of multiple In0.4Ga0.6As layers on GaAs (311)A and GaAs (331)A has been investigated by Atomic Force Microscopy and Photoluminescence. On GaAs (311)A, uniformly distributed In0.4Ga0.6As quantum wires (QWRs) with wider lateral separation were achieved, presenting a significant improvement in comparison with the result on single layer [H. Wen, Z.M. Wang, G.J. Salamo, Appl. Phys. Lett. 84 (2004) 1756]. On GaAs (331)A, In0.4Ga0.6As QWRs were revealed to be much straighter than in the previous report on multilayer growth [Z. Gong, Z. Niu, Z. Fang, Nanotechnology 17 (2006) 1140]. These observations are discussed in terms of the strain-field interaction among multilayers, enhancement of surface mobility at high temperature, and surface stability of GaAs (311)A and (331)A surfaces.  相似文献   

16.
The formation of a system of one-dimensional quantum conductors in porous multilayer InxGa1?xAs/GaAs structures with a two-dimensional charge-carrier gas in the InxGa1?xAs layers is discussed. The transition from the single-crystalline to porous matrix is studied with scanning atomic force microcopy. A decrease in the dimensionality of the electron-hole gas in the objects, i.e., a transition from the two-dimensional to a one-dimensional system, is established by analyzing the dependences of the position and width of a spectral line in the photoluminescence spectra on the etching time. Both multilayer periodic superlattices and a structure with a single InxGa1?xAs layer located near the surface of gallium arsenide are studied. The electrophysical characteristics of electrons in the porous superlattices are measured as functions of temperature. They confirm the formation of a new structure and indicate a change in the mechanism of electron scattering in the quasi-one-dimensional transport channels formed in the system.  相似文献   

17.
The effect of hydrogen on donors and interface defects in silicon modulation doped AlxGa1−xAs/InyGa1−yAs/GaAs heterostructures has been investigated by photoluminescence (PL). Hydrogenation was carried out on two sets of samples, one set consists of high quality pseudomorphic heterostructures and another set having partially lattice relaxed structures prone to the defects. On exposure of high quality pseudomorphic structures to hydrogen plasma above 150 °C, a significant blue shift in the PL peak positions as well as bandwidth narrowing is observed. This indicates, the reduction in two-dimensional electron gas in the InyGa1−yAs quantum well due to hydrogen passivation of silicon donors in the AlxGa1−xAs supply layer. The reactivation of the donors is observed upon annealing the hydrogenated sample for 1 h at 250 °C under hydrogen ambient. Another interesting feature is a significant improvement in the PL of lattice-relaxed structures upon hydrogenation of the samples above 250 °C, which is attributed to the hydrogen passivation of interface defects due to the misfit dislocations.  相似文献   

18.
The infrared radiation from hot holes in InxGa1−x As/GaAs heterostructures with strained quantum wells during lateral transport is investigated experimentally. It is found that the infrared radiation intensities are nonmonotonic functions of the electric field. This behavior is due to the escape of hot holes from quantum wells in the GaAs barrier layers. A new mechanism for producing a population inversion in these structures is proposed. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 7, 478–482 (10 October 1996)  相似文献   

19.
In0.45Ga0.55As/GaAs multistacking quantum dot (QD) structures were fabricated on a GaAs (n 1 1)B (n=2–4) substrate by metalorganic vapor-phase epitaxy. QDs spontaneously aligned in the [0 1 1] direction were observed on stacked QDs, whereas QDs were randomly distributed in the initial In0.45Ga0.55As layer growth. The formation mechanism of this self-alignment was studied by changing the number of In0.45Ga0.55As/GaAs multilayers and crystallographic arrangement. Photoluminescence spectra showing clear polarization dependence indicate carrier coupling in the QD arrays. This growth technique results in spontaneously aligned InGaAs QDs without any preprocessing technique prior to growth.  相似文献   

20.
Two Mn-related luminescence peaks have been observed in a series of nominally undoped Ga0.47In0.53As/Al0.48In0.52As multiple quantum wells (MQW) grown lattice-matched on InP substrates by molecular beam epitaxy. These two peaks correspond to on-center and on-edge impurity states, respectively. The origin of the Mn impurities is outdiffusion from the Fe-doped semiinsulating InP substrate into the epitaxial layer. The binding energy of Mn acceptors, determined to be 53±3 meV in bulk-like Ga0.47In0.53As, increases to 80±5 meV for the on-center Mn state in a 58 Å MQW. The strong well-width dependence of the binding energy is explained in terms of the unique behavior of the Mn impurity in III–V semiconductors. The Mn in Ga0.47In0.53As and Ga0.47In0.53As/Al0.48In0.52As MQWs behaves predominantly as a deep impurity.On leave from: A. F. Ioffe Physicotechnical Institute, Leningrad, USSR  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号