首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
3.
无水三氯化钕与环戊烷基环戊二烯钠、溴化锂(1:2:1摩尔比)反应,除去不溶物和溶剂后,产物在己烷/四氢呋喃溶剂中冷冻得到兰紫色晶体(C5H9C5H4)3NdBrLi(THF)3(配合物1)。其中心金属Nd3+的配位数为10,以η5与3个环戊二烯基相连,并通过单溴原子桥连锂原子,形成双核结构。该晶体属三斜晶系,P`1空间群。晶体学参数为a=12.048(2)、b=13.498(3)、c=13.831(3);α=104.16(3)、β=104.07(3)、γ=95.96(3); V=2083.3(7)3、Z=2、Dc=1.35Mg/m3、Mr=847.01gmol-1、F(000)=874。无水三氯化钐与环戊烷基环戊二烯钠(1:3)反应,产物在-30oC下的己烷溶剂中结晶得桔红色晶体(C5H9C5H4)3SmTHF(配合物2)。该晶体属正交晶系,Fdd2空间群。晶胞参数a=28.175(5) 、b=46.24(2)、c=9.167(4);V=11943(8)3、Z=16、Dc=1.38Mg/m3、 Mr=622.11 g·mol-1、F(000)=5136。10配位的金属Sm3+与3个环戊二烯基以η5相连,并结合一个四氢呋喃溶剂分子。  相似文献   

4.
The reactions of the indenyl radicals with acetylene (C2H2) and vinylacetylene (C4H4) is studied in a hot chemical reactor coupled to synchrotron based vacuum ultraviolet ionization mass spectrometry. These experimental results are combined with theory to reveal that the resonantly stabilized and thermodynamically most stable 1-indenyl radical (C9H7.) is always formed in the pyrolysis of 1-, 2-, 6-, and 7-bromoindenes at 1500 K. The 1-indenyl radical reacts with acetylene yielding 1-ethynylindene plus atomic hydrogen, rather than adding a second acetylene molecule and leading to ring closure and formation of fluorene as observed in other reaction mechanisms such as the hydrogen abstraction acetylene addition or hydrogen abstraction vinylacetylene addition pathways. While this reaction mechanism is analogous to the bimolecular reaction between the phenyl radical (C6H5.) and acetylene forming phenylacetylene (C6H5CCH), the 1-indenyl+acetylene→1-ethynylindene+hydrogen reaction is highly endoergic (114 kJ mol−1) and slow, contrary to the exoergic (−38 kJ mol−1) and faster phenyl+acetylene→phenylacetylene+hydrogen reaction. In a similar manner, no ring closure leading to fluorene formation was observed in the reaction of 1-indenyl radical with vinylacetylene. These experimental results are explained through rate constant calculations based on theoretically derived potential energy surfaces.  相似文献   

5.
The title compounds, Cu(L1)(C4H8NHO) and Ni(L2)(C4H8NHO) (H2L1 = 5-bro- mosalicylaldehyde-p-nitrobenzoylhydrazone, H2L2 = 5-bromosalicylaldehyde-p-hydroxybenzo- ylhydrazone), have been obtained and characterized by single-crystal X-ray diffraction. Complex 1 belongs to the triclinic system, space group P1 with a = 8.6960(2), b = 9.957(2), c = 11.878(2) , α = 73.36(3), β = 78.25(3), γ = 82.64(3)o, V = 962.1(3) 3, Mr = 512.81, Z = 2, F(000) = 514, Dc = 1.770 g/cm3, μ(MoKα) = 3.251, R = 0.0337 and wR = 0.0846. Complex 2 is of monoclinic, space group P21/c with a = 13.313(2), b = 8.2096(1), c = 21.890(3) , β = 125.737(3)o, V = 1941.9(4) 3, Mr = 478.97, Z = 4, F(000) = 968, Dc = 1.638 g/cm3, μ(MoKα) = 3.085, R = 0.0356 and wR = 0.0817. The ligands form a satisfactory N2O2 square plane around the metal centers in two compounds. Different patterns of hydrogen bonds are observed owing to the presence of different substituents on aromatic ring of the acylhydrazone Schiff bases. In complex 1, square-planar copper(II) complexes are linked by intermolecular hydrogen bonds leading to zigzag infinite chains. In complex 2, the metal complexes are linked via hydrogen bonds to form corrugated sheets in a staggered fashion; 3D channels along the b axis are constructed through other non-covalent interactions between the neighboring layers.  相似文献   

6.
7.
8.
9.
<正> INTRODUCTION. Studies of six-coordinated diorganotin(Ⅳ) compounds with octahedral geometry have been widely made, which indicate that the transor distorted trans [SnR_2] unit is common for the dialkyltin(Ⅳ) species  相似文献   

10.
11.
12.
13.
14.
15.
The carboxylation of styrene into carboxylic acids in the N(C4H9)4Br—heptane system in the presence of phosphine complexes and palladium acetate was studied. In the absence of phosphine, the Pd catalyst seems to be stabilized in solution by forming anionic complexes with NBu4Br; the stabilization depends on the acidity of the reaction medium. The catalytic system can be used repeatedly, its activity being reduced only slightly.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2458–2461, November, 2004.  相似文献   

16.
Alkylxanthate complexes of the general formula [M{S(S)COR}2] (M = Ni, 63Cu, and 65Cu; R = C2H5, i-C3H7, i-C4H9, s-C4H9, and C5H11) were synthesized and studied by EPR and high-resolution solid-state 13C CP/MAS NMR. In the copper(II) complexes stabilized in the matrix of nickel(II) compounds, square planar chromophores [CuS4] are characterized by rhombic distortion (EPR data). Experimental EPR spectra were simulated at the second order of perturbation theory. Nickel(II) complexes were characterized by 13C NMR spectra. In all cases, the –OC(S)S– groups were found to exhibit intramolecular structural equivalence.  相似文献   

17.
18.
19.
Phase diagrams of some binary aqueous systems with tetraalkylammonium fluorides are examined. The size of the hydrophobic moiety of the guest is consecutively varied in the series (i-C5H11)4−k(C4H9)kNF (k=0, 1, 2, 3) by replacing bulky isoamyl radicals with n-butyl radicals. Changes in clathrate formation caused by variations of the sizes and forms of guests are analyzed in the series (i-C5H11)k−4(C4H9)kNF−H2O (k=0, 1, 2, 3, 4). All tetraisoamylammonium fluoride hydrates are more stable than other hydrates of this series. The stability of the compounds increases due to the fact that the isoamyl radicals use the host cavities more effectively than the butyl radicals. In all hydrates of the series, tetragonal structures-I (TS-I), which were earlier thought typical only for hydrates of tetrabutylammonium salts, are formed. Hydrates of the orthorhombic system are formed until three isoamyl radicals have been replaced by butyl radicals. Hydrates with 26–28 water molecules (mp 27.4–34.6°C) are the most stable hydrates of the series, except for i-AmBu3NF·25.9 H2O, melting 0.3°C lower than the tetragonal hydrate in the same system. All compounds are defined chemically, and for some of them crystal data are given. Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences. Institute of Physical Chemistry, Polish Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 3, pp. 501–508, May–June, 1995. Translated by L. Smolina  相似文献   

20.
The reactions of ten metastable immonium ions of general structure R1R2C?NH+C4H9 (R1 = H, R2 = CH3, C2H5; R1 = R2 = CH3) are reported and discussed. Elimination of C4H8 is usually the dominant fragmentation pathway. This process gives rise to a Gaussian metastable peak; it is interpreted in terms of a mechanism involving ion-neutral complexes containing incipient butyl) cations. Metastable immonium ions ontaining an isobutyl group are unique in undergoing a minor amount of imine (R1R2C?NH) loss. This decomposition route, which also produces a Gaussian metastable peak, decreases in importance as the basicity of the imine increases. The correlation between imine loss and the presence of an isobutyl group is rationalized by the rearrangement of the appropriate ion-neutral complexes in which there are isobutyl cations to the isomeric complexes containing the thermodynamically more stable tert-butyl cations. A sizeable amount of a third reaction, expulsion of C3H6, is observed for metastable n-C4H9 +NH?CR1R2 ions; in contrast to C4H8 and R1R2C?NH loss, C3H6 elimination occurs with a large kinetic energy release (40–48 kJ mol?1) and is evidenced by a dish-topped metastable peak. This process is explained using a two-step mechanism involving a 1,5-hydride shift, followed by cleavage of the resultant secondary open-chain cations, CH3CH+ CH2CH2NHCHR1R2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号