首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the homogeneous and isotropic solutions of a gravitational theory with scalar fields. Qualitative characteristics of these solutions are analyzed and important differences with respect to the usual Einstein theory are pointed out.  相似文献   

2.
It is shown that all torsion-free vacuum solutions of the model of de Sitter (dS) gauge theory of gravity are the vacuum solutions of Einstein field equations with the same positive cosmological constant. Furthermore, for the gravitational theories with more general quadratic gravitational Lagrangian (F 2 + T 2), the torsion-free vacuum solutions are also the vacuum solutions of Einstein field equations.  相似文献   

3.
For static and spherically symmetric gravitational fields in the general theory of relativity, it is found possible completely to avoid tensor analysis. The principle of equivalence, illustrated by Einstein's elevator, is used to obtain Schwarzschild's equation, on which the three well-known tests of the general theory are usually based. The derivation is guided, as with Einstein, by Poisson's (Laplace's, in empty space) equation, which here can be solved by simple calculus.  相似文献   

4.
From a time-dependent boost-rotational symmetric vacuum solution of the Einstein Equations in five dimensions, through the Kaluza–Klein reduction the corresponding Einstein–Maxwell-dilaton solutions are obtained. The four dimensional counterpart turns out to be generalized Einstein–Rosen spacetimes representing unpolarized gravitational waves traveling in an inhomogeneous cosmology. Restricting the parameters we are able to obtain different 4D time-dependent solutions equipped with scalar and electromagnetic fields.  相似文献   

5.
Using a new ansatz for solving the Einstein equations with a scalar field with inverted sign in the kinetic term (phantom field), I find a series of formulae to derive axial symmetric stationary exact solutions of the phantom fields in general relativity. I focus on the solutions which represent wormholes. The procedure presented in this work allows to derive new exact solutions up to very simple integrations. Among other results, I find exact rotating solutions containing magnetic monopoles, dipoles, etc., coupled to phantom scalar and to gravitational multipole fields.  相似文献   

6.
A geometric property (spherical symmetry) which unambiguously distinguishes homogeneous cosmological models (Friedmann spaces) from other conformally planar gravitational fields is pointed out. Certain general properties of the distribution and motion of matter in conformally planar gravitational fields are established, and new solutions of the Einstein equations are derived.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika, No. 11, pp. 67–73, November, 1969.The author thanks D. D. Ivanenko and the participants in a seminar under his guidance for discussion of these results.  相似文献   

7.
The Lagrangian based theory of the gravitational field and its sources at the arbitrary background space-time is developed. The equations of motion and the energy-momentum tensor of the gravitational field are derived by applying the variational principle. The gauge symmetries of the theory and the associated conservation laws are investigated. Some properties of the energymomentum tensor of the gravitational field are described in detail and the examples of its application are given. The desire to have the total energymomentum tensor as a source for the linear part of the gravitational field leads to the universal coupling of gravity with other fields (as well as to the self-interaction) and finally to the Einstein theory.  相似文献   

8.
A theory of a gauged gravitational field with localization of the group of motions of a homogeneous static Einstein universe (Einstein group R x SO(4)) is formulated. Starting from the tetradic components of Einstein's universe, a relationship is established between the Riemannian metric and the gauge fields of Einstein's group. The metric connection with torsion, transforming when the gauge fields are switched off into the Christoffel connection of Einstein's universe, is found. It is shown that in the limit of infinite radius of curvature of Einsteinr's universe, the given Einstein-invariant gauge theory transforms into the tetradic theory of gravitation with localized triadic rotations. Exact solutions are obtained in the form of nonsingular cosmological models.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 68–73, July, 1985.  相似文献   

9.
Einstein equations describing gravitational fields are expressed as a compact exterior system of spinor-valued forms. It is pointed out that Clifford algebra-valued differential forms provide a natural formalism for Einstein gravitational fields. Finally we try to express these equations in a real spacetime.  相似文献   

10.
The failure of the Newtonian theory of gravitation to satisfactorily account for the motion of Mercury's perihelion cannot be held to have justified the development of general relativity. This paper shows how the origins of general relativity were firmly embedded in contemporary attempts to introduce the new mechanics of special relativity into gravitational theory. These new theories of gravitation took as their basis the electrodynamical equations as formulated by Minkowski and attempted to represent the gravitational potential first by a vector and then by a scalar (in the four-dimensional sense). That Einstein chose the symmetric fundamental tensorg ij as his gravitational potential is seen to have been both a natural and necessary development. With this viewpoint the full theory of general relativity can be seen to be remarkably similar to those theories of gravitation that preceded it. The paper also contains a previously unpublished letter written by Einstein to H. A. Lorentz.  相似文献   

11.
For gravitational fields with metrics which admit of groups of motions multiply — transitive on 2-dimensional space-like invariant varieties, the exact solutions of the Einstein gravitational equations are given for the case when the sources of the gravitational field are dust-like matter and a magnetic field. A magnetic field is orientated along a direction orthogonal to transitivity hypersurface. The solutions contain arbitrary functions. In the case of transitivity hypersurface of positive curvature and in the absence of a magnetic field, the solution is reduced to the Tolman spherically symmetric solution for dust-like matter. The conditions are studied under which the solutions with a magnetic field become asymptotically isotropic and approach the flat and the open Friedmann models. The case of transitivity hypersurfaces with signature (+ –) is also considered.  相似文献   

12.
A class of metric theories of gravitation on Minkowski spacetime is considered, which is—provided that certain assumptions (staying close to the original ideas of Einstein) are made—the almost most general one that can be considered. In addition to the Minkowskian metric G a dynamical metric H (called the Einstein metric)is defined by means of a second-rank tensor field S (referred to as gravitational potential).The theory is defined by a Lagrangian , from which the field equations as well as, e.g., the energy-momentum tensor field for the gravitational field follow. The case of weak fields is considered explicitly. The static, spherically and time-inversal symmetric field is calculated, and as a first step to investigate the theory's viability the parameters are fitted to the experimental data of the perihelion advance and the deflection of light at the Sun. Finally the question of gauge freedoms in the gravitational potential is briefly discussed.  相似文献   

13.
娄太平 《物理学报》2005,54(1):18-23
给出了包含重力场贡献在内具有宇宙因子项最普遍形式的重力场方程为Rμν-gμνR/2+λgμν=8πG(T(Ⅰ)μν+T(Ⅱ)μν)/c4,这里λ为Einstein宇宙常数,T(Ⅰ)μν,T(Ⅱ)μν分别代表物质纯物质部分和纯重力场部分的能量-动量张量.物质纯重力场部分的能量-动量张量表述为T(Ⅱ)μν=(DμρDρν-gμνDαβDαβ/4)/4πG,式中Dμν的定义为Dμν=ωμ/xν-ων/xμ,ωμ≡-c2gμ0/g00.并用重力场贡献在内最普遍形式的重力场方程分别研究了几个大家所熟悉的静态和稳态重力场,像带有Einstein宇宙因子λ项球对称纯物质球外部静态度规、静态荷电球外部度规、匀速转动星体外部度规及理想纯物质星体内部静态平衡等,并进行了讨论. 关键词: 能量动量张量 重力场方程 静态重力场 稳态重力场  相似文献   

14.
We show that in 1929 Cartan and Einstein almost produced a theory in which the electromagnetic (EM) field constitutes the time-like 2-form part of the torsion of Finslerian teleparallel connections on pseudo-Riemannian metrics. The primitive state of the theory of these connections would not, and did not, permit Cartan and Einstein to realize how their torsion field equations contained the Maxwell system and how the Finslerian torsion contains the EM field. Cartan and Einstein discussed curvature field equations, though failing to focus on the fact that teleparallelism automatically implies gravitational field equations with torsion terms as source, both in first and second order. We further show that the first-order contribution of the EM field to the source of the gravitational field may play havoc with the remeasurement of Newton's gravitational constant, even if the experiment is electrically grounded. These results are also used as support for the thesis that there is an alternative to the present way of dealing with the great theoretical questions of physics. On the practical side, the inconveniences faced in measuring G may be greatly compensated by the possibility of manipulating spacetime with electric fields at the first-order level.  相似文献   

15.
The gravitational interaction of a scalar field, with allowance for the possible influence of the torsional and nonmetric nature of space-time, is investigated within the framework of the affine-metric theory of gravitation. The equations of the theory are derived from the variational principle. It is shown that in an affine-metric space, the combined Lagrangian of the gravitational and scalar fields with conformal coupling is reduced to the Lagrangian of the system of gravitational and axion fields in the general theory of relativity. All of the exact general solutions of the consistent system of equations of gravitational and scalar (massless) fields in the affine-metric space under consideration are obtained for all types of homogeneous Friedmann cosmological models, with the initial singularity being removed from some of them. Homogeneous, anisotropic cosmological models, for which all of the exact general solutions are also obtained, are investigated. Some of these models are nonsingular, and the effect of isotropization due to the torsional and nonmetric nature of space-time occurs for many of them. K. D. Ushinskii State Pedagogical University, Yaroslavl’. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 39–50, May, 1998.  相似文献   

16.
We apply the method of moving anholonomic frames with associated nonlinear connections to the (pseudo) Riemannian space geometry and examine the conditions when locally anisotropic structures (Finsler like and more general ones) could be modeled in the general relativity theory and/or Einstein–Cartan–Weyl extensions [1]. New classes of solutions of the Einstein equations with generic local anisotropy are constructed. We formulate the theory of nearly autoparallel (na) maps generalizing the conformal transforms and formulate the Einstein gravity theory on na–backgrounds provided with a set of na–map invariant conditions and local conservation laws. There are illustrated some examples when vacuum Einstein fields are generated by Finsler like metrics and chains of na–maps.  相似文献   

17.
In this paper we deal with quadratic metric-affine gravity, which we briefly introduce, explain and give historical and physical reasons for using this particular theory of gravity. We then introduce a generalisation of well known spacetimes, namely pp-waves. A classical pp-wave is a 4-dimensional Lorentzian spacetime which admits a nonvanishing parallel spinor field; here the connection is assumed to be Levi-Civita. This definition was generalised in our previous work to metric compatible spacetimes with torsion and used to construct new explicit vacuum solutions of quadratic metric-affine gravity, namely generalised pp-waves of parallel Ricci curvature. The physical interpretation of these solutions we propose in this article is that they represent a conformally invariant metric-affine model for a massless elementary particle. We give a comparison with the classical model describing the interaction of gravitational and massless neutrino fields, namely Einstein–Weyl theory and construct pp-wave type solutions of this theory. We point out that generalised pp-waves of parallel Ricci curvature are very similar to pp-wave type solutions of the Einstein–Weyl model and therefore propose that our generalised pp-waves of parallel Ricci curvature represent a metric-affine model for the massless neutrino.  相似文献   

18.
A quantum measurement-like event can produce any of a number of macroscopically distinct results, with corresponding macroscopically distinct gravitational fields, from the same initial state. Hence the probabilistically evolving large-scale structure of space-time is not precisely or even always approximately described by the deterministic Einstein equations. Since the standard treatment of gravitational wave propagation assumes the validity of the Einstein equations, it is questionable whether we should expect all its predictions to be empirically verified. In particular, one might expect the stochasticity of amplified quantum indeterminacy to cause coherent gravitational wave signals to decay faster than standard predictions suggest. This need not imply that the radiated energy flux from gravitational wave sources differs from standard theoretical predictions. An underappreciated bonus of gravitational wave astronomy is that either detecting or failing to detect predicted gravitational wave signals would constrain the form of the semi-classical theory of gravity that we presently lack.  相似文献   

19.
20.
In these lectures general relativity is outlined as the classical field theory of gravity, emphasizing physical phenomena rather than formalism. Dynamical solutions representing traveling waves as well as stationary fields like those of black holes are discussed. Their properties are investigated by studying the geodesic structure of the corresponding space-times, as representing the motion of point-like test particles. The interaction between gravitational, electro-magnetic and scalar fields is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号