首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Aliphatic poly(carbonate-sulfone) homo- and copolymers were prepared from 1,3-bis(3-hydroxypropylsulfonyl)propane (Diol-333) and various alkanediols. The copolymers are random in nature since they were prepared by melt copolymerization. Both the homopolymer and the copolymers exhibited multiple reproducible first-order transitions during differential scanning calorimetry (DSC) heating scans, but most of them exhibited only single exotherm during cooling scans. Typical schlieren textures were observed when these polymers were cooled from their isotropic melts. The copolymers have wide-angle x-ray diffraction (WAXD) patterns almost identical to that of the homopolymer except in the low-angle spacing, indicating their packing in the crystalline domain in similar. DSC, cross-polarized optical microscopy, and WAXD revealed that these polymers were smectic liquid crystalline at room temperature. Since aliphatic poly(carbonate-sulfone)s are flexible linear polymers with no rigid rod components, the liquid crystalline phase formation is probably directed by the dipole–dipole interactions between sulfone groups in adjacent chains. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Aliphatic and aromatic-aliphatic poly(ester-sulfone)s were synthesized by the transesterifications of diphenyl adipate and diphenyl phthalates (ortho, meta, para) with two sulfonecontaining diols, 1,3-bis (3-hydroxypropylsulfonyl) propane (Diol-333) and 1,4-bis(3-hydroxypropylsulfonyl) butane (Diol-343). Based on DSC and WAXD studies, the aliphatic homopoly(ester-sulfone)s are semicrystalline at room temperature and liquid crystalline at elevated temperature, while their copolymers with alkanediols are liquid crystalline. The liquid crystalline phase formation in aliphatic poly(ester-sulfone)s is attributed to the strong dipole-dipole interactions between sulfone groups. The aromatic-aliphatic poly(estersulfone)s from diphenyl phthalate (ortho) and isophthalate (meta) are amorphous. They are soluble in trifluoroacetic acid and m-cresol at room temperature, and DMF, DMAC, and DMSO at elevated temperature. The aromatic-aliphatic poly(ester-sulfone)s from diphenyl terephthalate are semicrystalline and are soluble only in trifluoroacetic acid. For a given diol, the glass transition temperatures of aromatic-aliphatic poly(ester-sulfone)s increase from phthalate to isophthalate to terephthalate. This is because the flexibility of the benzene ring in the polymer backbone decreases from ortho to meta to para substitution. As a comparison, polyesters without sulfone groups were synthesized from two alkanediols, 1,9-nonanediol and 1,10-decanediol, and the diphenyl esters. The poly(ester-sulfone)s have glass transition temperatures 60–80°C higher than the corresponding polyesters without sulfone groups, due to the strong dipolar interactions between sulfone groups. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
New poly(amide–imide)s were prepared from a diimide–dicarboxylic acid, 1,4-bis(4-trimellitimidophenoxy)-2-tert-butylbenzene ( BTTB ), with various diamines by the direct polycondensation in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. The new diimide–dicarboxylic acid BTTB containing an ether linkage and tert-butyl substituent was synthesized by the condensation reaction of 1,4-bis(4-aminophenoxy)-2-tert-butylbenzene with trimellitic anhydride. All the polymers were obtained in quantitative yields with inherent viscosities of 0.62–1.06 dL g−1. The polymers were amorphous, and most of them were readily soluble in aprotic polar solvents such as NMP, N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF), as well as in less polar solvents such as dimethyl sulfoxide (DMSO), m-cresol, pyridine, and γ-butyrolactone, and also even in tetrahydrofuran. The glass transition temperatures of the polymers were determined by DSC method, and they were in the range of 238–279°C. These polymers were stable up to 408–449°C in air and 451–483°C in nitrogen and lose 10% weight in the range of 479–525°C in air and 480–528°C in nitrogen atmosphere. The polymer films had a tensile strength range of 71–115 MPa, an elongation at break range of 4–14%, and a tensile modulus range of 2.3–3.1 GPa. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2301–2307, 1998  相似文献   

4.
Eight poly(urethane-sulfone)s were synthesized from two sulfone-containing diols, 1,3-bis(3-hydroxypropylsulfonyl)propane (Diol-333) and 1,4-bis(3-hydroxypropylsulfonyl)butane (Diol-343), and three diisocyanates, 1,6-hexamethylene diisocyanate (HMDI), 4,4′-diphenylmethane diisocyanate (MDI), and tolylene diisocyanate (TDI, 2,4- 80%; 2,6-20%). As a comparison, eight polyurethanes were also synthesized from two alkanediols, 1,9-nonanediol and 1,10-decanediol, and three diisocyanates. Diol-333 and Diol-343 were prepared by the addition of 1,3-propanedithiol or 1,4-butanedithiol to allyl alcohol and subsequent oxidation of the resulting sulfide-containing diols. The homopoly(urethanesulfone)s from HMDI and MDI are semicrystalline, and are soluble in m-cresol and hot DMF, DMAC, and DMSO. The copoly(urethane-sulfone)s from a 1/1 molar ratio mixture of Diol-333 and Diol-343 with HMDI or MDI have lower crystallinity and better solubility than the corresponding homopoly(urethane-sulfone)s. The poly(urethane-sulfone)s from TDI are amorphous, and are readily soluble in m-cresol, DMF, DMAC, and DMSO at room temperature. Differential scanning calorimetry data showed that poly(urethane-sulfone)s have higher glass transition temperatures and melting points than the corresponding polyurethanes without sulfone groups. The rise in glass transition temperature is 20–25°C while the rise in melting temperature is 46–71°C. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Six macrocyclic complexes, were synthesized by reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane and various amines and their copper(II) perchlorate complexes were synthesized by template effect reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane, Cu(ClO4)2?·?6H2O and amines. The metal-to-ligand ratios were found to be 1?:?1. Cu(II) metal complexes are 1?:?2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3?M. The Cu(II) complexes are proposed to be square planar based on elemental analysis, FT–IR, UV–Vis, magnetic susceptibility measurements, molar conductivity measurements, and mass spectra.  相似文献   

6.
By adopting “grafting from” manner, polystyrene was grafted onto the surface of silica gel particles with an average size of 125 μm in a solution polymerization system, and grafted particle PSt/SiO2 was prepared. Using 1,4-bis (chloromethoxy) butane (BCMB, it is nontoxic.) as chloromethylation reagent, chloromethylation reaction for the grafted particle PSt/SiO2 was performed in the presence of Lewis acid catalyst SnCl4. At the same time, cross-linked styrene-divinylbenzene copolymer (CPS) microsphere also was chloromethylated with the same reagent as PSt/SiO2, so that two kinds of chloromethylated polystyrene particles were obtained, and they are chloromethylated grafted particle (CMPS/SiO2) and chloromethylated cross-linked polystyrene (CMCPS) microsphere, respectively. The chemical structures and compositions of the two particles were characterized using Fourier transform infrared and Volhard method. The effects of various factors on the chloromethylation reactions were mainly investigated. The experimental results show that the process to prepare the two kinds of chloromethylated polystyrene particles not only has the character of environment friendness and low cost but also is convenient to control via adjusting various reaction conditions. The main reaction conditions affecting the chloromethylation reactions are reaction time, the added amount of BCMB, and the used amount of solvent and catalyst. They influence the reaction in two respects: (1) the chloromethylation degrees of polystyrene are different under different conditions; (2) Friedel–Crafts cross-linking reaction between polystyrene macromolecules is accelerated or inhibited under different conditions (for CPS microsphere, this cross-linking reaction also is called the additional cross-linking). Under suitable conditions, the two kinds of chloromethylated polystyrene particles with a high chlorine content (about 17%, this chlorine content was calculated based on polystyrene weight) can be gained using SnCl4 as catalyst and CH2Cl2 as solvent at room temperature for 10 h and basically without cross-linking or additional cross-linking.  相似文献   

7.
Novel aromatic polyimides containing symmetric, bulky di-tert-butyl substituents unit were synthesized from 1,4-bis(4-aminophenoxy)2,5-di-tert-butylbenzene (BADTB) and various aromatic tetracarboxylic dianhydrides by the conventional two-stage procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide to give poly(amic acid)s, followed by cyclodehydration to polyimides. The diamine was prepared through the nucleophilic displacement of 2,5-di-tert-butylhydroquinone with p-chloronitrobenzene in the presence of K2CO3, followed by catalytic reduction. Depending on the dianhydrides used, the poly(amic acid)s obtained had inherent viscosities of 0.83–1.88 dL g−1. Most of the polyimides formed transparent, flexible, and tough films. Tensile strength and elongation at break of the BADTB-based polyimide films ranged from 68–93 MPa and 7–11%, respectively. The polyimide derived from 4,4′-hexafluoro-isopropylidenebisphathalic anhydride had better solubility than the other polyimides. These polyimides had glass transition temperatures between 242–298°C and 10% mass loss temperatures were recorded in the range of 481–520°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1527–1534, 1997  相似文献   

8.
The synthesis of a highly soluble, 2,5-disubstituted poly(p-phenylene vinylene) with pendant side chains containing ether groups was accomplished by a dehydrochlorination route. Specific interactions of the oxygen-containing side chains with the solvent are presumably responsible for the high solubility of the polymer, especially in protogenic solvents. The polymer microstructure was characterized by 1H- and 13C-NMR. The polymer showed solvatochromic properties when dissolved in a variety of solvents. The relatively high molecular weight (Mn = 17,000) permitted the fabrication of free-standing films. The electrical conductivity of iodine-doped films was approximately 2 × 10–2 S cm–1. © 1995 John Wiley & Sons, Inc.  相似文献   

9.
High molecular weight poly(phenylenebenzobisoxazole) (PBO) was synthesized from 1,3-diamino-4,6-dihydroxybenzene dihydrochloride (1) and 1,4-bis(trichloromethyl)benzene (3) in polyphosphoric acid (PPA) or a mixture of PPA and methanesulfonic acid. When PPA was used as the solvent, 3 was first converted in situ to terephthalic acid before 1 was added to minimize degradation of 1. Compound 3 did not need to be sealed from atmospheric moisture because the trichloromethyl groups were not moisture sensitive. It was not necessary to use micronized 3. Adjustment of P2O5 content was optional for this reaction because no water was liberated from the condensation of 1 and 3. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2143–2145, 1997  相似文献   

10.
A novel polymer-forming diimide–diacid, 2,6-bis(4-trimellitimidophenoxy)naphthalene, was prepared by the condensation reaction of 2,6-bis(4-aminophenoxy)naphthalene with trimellitic anhydride (TMA). A series of novel aromatic poly(amide–imide)s containing 2,6-bis(phenoxy)naphthalene units were prepared by the direct polycondensation of the diimide–diacid with various aromatic diamines using triphenyl phosphite (TPP) in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. Thirteen of the obtained polymers had inherent viscosities above 1.01 dL/g and up to 2.30 dL/g. Most of polymers were soluble in polar solvents such as DMAc and could be cast from their DMAc solutions into transparent, flexible, and tough films. These films had tensile strengths of 79–117 MPa, elongation-at-break of 7–61%, and initial moduli of 2.2–3.0 GPa. The wide-angle X-ray diffraction revealed that some polymers are partially crystalline. The glass transition temperatures of some polymers could be determined with the help of differential scanning calorimetry (DSC) traces, which were recorded in the range 232–300°C. All the poly(amide–imide)s exhibited no appreciable decomposition below 450°C, and their 10% weight loss temperatures were recorded in the range 511–577°C in nitrogen and 497–601°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 919–927, 1998  相似文献   

11.
Poly(thioether amide)s containing pyridine moieties in their backbone were obtained by the polyaddition of 2,6-bis(acrylamido)pyridine (2,6-BAAP), derived from 2,6-diaminopyridine and acryloyl chloride, with an aromatic or aliphatic dithiol. The influence of various reaction conditions on the polyaddition was investigated in comparison with the polyaddition of 1,3-bis (acrylamido)benzene (1,3-BAAB). 2,6-BAAP gave the polymer even in the absence of any initiator at lower temperatures while 1,3-BAAB did not, which was attributable principally to intramolecular base catalysis of the pyridine moieties. Basic additives effectively promoted the reaction rate and increased the chain length. Those facts and NMR of the resulting polymers indicated Michael-type polyaddition. The polymers from 2,6-BAAP were amorphous and gave transparent and tough films having a high refractive index exceeding 1.7. GPC and DSC characterizations were also made. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
13.
Fifteen highly regular hydrogen‐bonded, novel thermotropic, aromatic‐aliphatic poly(ester–amide)s (PEAs) were synthesized from aliphatic amido diols by melt polycondensation with dimethyl terephthalate and solution polycondensation with terephthaloyl chloride. Intermolecular hydrogen bonds more or less perpendicular to the main‐chain direction induce the formation and stabilization of liquid crystalline property for these PEAs. The structure of these polymers, even in the mesomorphic phase is dominated by hydrogen bonds between the amide–amide and amide–ester groups in adjacent chains. Aliphatic amido diols were synthesized by the aminolysis of γ‐butyrolactone, δ‐valerolactone and ε‐caprolactone with aliphatic diamines containing a number of methylene groups from two to six in isopropanol medium at room temperature. Effects of polarity of the solvent on solution polymerization and effect of catalyst on trans esterification were studied. These polymers were characterized by elemental analysis, FTIR, 1H NMR, 13C NMR, solubility studies, inherent viscosity, DSC, X‐ray diffraction, polarized light microscopy, and TGA. All the melt/solution polycondensed PEAs showed multiple‐phase transitions on heating with second transitions identified as nematic/smectic/spherullitic texture. The mesomorphic properties were studied as a function of their chemical structure by changing alternatively m or n. Odd‐even effect on mesophase transition temperature, isotropization temperature, and crystallinity were studied. The effect of molecular weight and polydispersity on mesophase/isotropization temperature and thermal stability were investigated. It was observed that there exists a competition for crystallinity and liquid crystallinity in these PEAs © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2469–2486, 2000  相似文献   

14.
ESR spectroscopy was applied to study paramagnetic complexes of the nitroxyl biradical of 1,4-bis(2,2,6,6-tetramethyl-1-oxyl-4-piperidyl)butane formed with AlCl3 in a toluene solution and resulted from the interaction with the acid sites on the SiO2 and γ-Al2O3 surface. This biradical in solution forms a complex with two AlCl3 molecules, and a complex with two hydroxyl groups is formed on the SiO2 surface. When the biradical is adsorbed on the γ-Al2O3 surface, complex formation is complicated because of steric hindrance preventing bidentate coordination. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 165–167, January, 2007.  相似文献   

15.
Alternate poly(amide-imide) [P(A-alt-I)] was synthesized from two aromatic diamines and trimellitic anhydride (TMA). When the diamine was 2,2-bis[4-(3-aminophenoxy)phenyl]sulfone (BAPS), the resulted P(A-alt-I) was found to be of light color. Specifically, when BAPS was located between two amide groups in the P(A-alt-I) chain, the P(A-alt-I) was almost colorless. A series of P(A-alt-I)s (Series III) containing BAPS was synthesized through direct polycondensation of an aromatic dicarboxylic acid prepared from various aromatic diamines and TMA, as well as BAPS. Polymers of Series III were much lighter in color than those of the isomeric series (BAPS was located between two imide group). The series of P(A-alt-I)s III had inherent viscosities ranging 0.69–1.35 dL/g and good solubility in various solvents. The tensile strengths, elongations to break, and initial moduli of the films were 72–107 MPa, 7–12% and 1.93–2.39 GPa, respectively, and most of the films had no yielding. Polymers of Series III had glass transition temperatures 210–272°C and 10% weight loss temperatures in nitrogen 518–545°C, indicating excellent thermal stability. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2421–2428, 1999  相似文献   

16.
Two different series of poly(ester imide)s, which are distinguished from each other in the orientation of the ester linkages and show well-differentiated thermotropic behavior, are investigated by means of model calculations and dielectric relaxation spectroscopy. Model calculations show that the orientation of the ester linkages has a strong influence on the rotational energy barriers. The dielectric relaxation spectra of both series shows three relaxation regions in the temperature range between 100 and 400 K that have been identified as the α-, β- and γ-relaxation processes. A difference of about two orders of magnitude between the characteristic rates of the γ-relaxation is the main feature observed in the dielectric response. However, the β-relaxation shows very similar behavior for both series. The differences in the relaxation behavior in the solid state are interpreted on the basis of the rotational barriers deduced from the model calculation results. © 1997 John Wiley & Sons, Inc.  相似文献   

17.
The effect of substituents on the electropolymerization of benzene derivatives and the redox properrties of the corresponding polymers were determined using Brown's substituent constants (σ+). Electron-donating groups lower the oxidation potential by which increase in the current efficiency was observed. However, stabilization of the produced cation radicals by the electron-donating groups resulted in a decrease in the polymerization efficiency. The appropriate values of σ+ for the efficient polymerization ranged near ?1.5.  相似文献   

18.
A naphthalene unit-containing bis(ether anhydride), 2,7-bis(3,4-dicarboxyphenoxy)naphthalene dianhydride, was prepared in three steps starting from the nucleophilic nitrodisplacement reaction of 2,7-dihydroxynaphthalene and 4-nitrophthalonitrile in N,N-dimethylformamide (DMF) solution in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). High-molar-mass aromatic poly(ether imide)s were synthesized using a conventional two-stage polymerization process from the bis(ether anhydride) and ten aromatic diamines. The intermediate poly(ether amic acid)s had inherent viscosities of 0.95–2.67 dL/g. The films of poly(ether imide)s derived from two rigid diamines, that is, p-phenylenediamine and benzidine, crystallized and embrittled during the thermal imidization process. The other poly(ether imide)s belonged to amorphous materials and could be fabricated into transparent, flexible, and tough films. These poly(ether imide) films had yield strengths of 91–115 MPa, tensile strengths of 89–136 MPa, elongation to break of 11–45%, and initial moduli of 1.7–2.2 GPa. The Tgs of poly(ether imide)s were recorded in the range of 222–256°C depending on the nature of the diamine moiety. All polymers were thermally stable up to 500°C, with 10% weight loss being recorded above 540°C in air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2281–2287, 1997  相似文献   

19.
Six new macrocyclic complexes were synthesized by the template effect from reaction of 1,4-bis(2-carboxyaldehydephenoxy)butane, Ni(NO3)2 · 6H2O or Co(NO3)2 · 6H2O and various diamines. The metal-to-ligand ratios of Ni(II) or Co(II) metal complexes were found to be 1 : 1. Coordination of the Schiff base to Ni(II) and Co(II) through the two nitrogen and two oxygen atom (ONNO) are expected to reduce the electron density in the azomethine link and hydroxyl group. The Ni(II) and Co(II) complexes are proposed to be tetrahedral and are 1 : 2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3 M. The structures are proposed from elemental analysis, FT-IR, UV-VIS, magnetic susceptibility measurements, molar conductivity measurements, and mass spectra.  相似文献   

20.
1,4-Bis(hydroxymethyl)benzene undergoes bisphosphorylation with P(NEt2)3 at room temperature. The reaction produces no cyclic structures.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 440–442, February, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号