首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(phenylacetylene)s containing trifluoromethyl groups on their benzene rings were synthesized, and gas permeation behaviors of their films were examined. Permeability coefficients for O2 and N2, diffusion selectivity (Do2/DN2) and solubility selectivity (SO2/SN2) were estimated. The gas permeability of polymer films were found to be enhanced remarkably with introduction of trifluoromethyl groups into the polymers: poly[2,4,5-tris(trifluoromethyl)phenylacetylene], Po2 = 7.8 × 10?8 [cm3 (STP) cm cm?2 s?1 cm Hg?1], Po2/PN2 = 2.1. The relationship between the polymer structures and their gas permeability was discussed.  相似文献   

2.
Poly(diphenylacetylene)s having various silyl groups are soluble in common solvents, from whose membranes poly(diphenylacetylene) membranes can be obtained by desilylation. The oxygen permeability coefficients of the desilylated polymers are quite different from one another (120–3300 barrers) irrespective of the same polymer structure. When bulkier silyl groups are removed, the oxygen permeability increases to larger extents. Poly[1-aryl-2-p-(trimethylsilyl)phenylacetylene]s are soluble in common solvents, and afford free-standing membranes. These Si-containing polymer membranes are desilylated to give the membranes of poly[1-aryl-2-phenylacetylene]s. Both of the starting and desilylated polymers show very high thermal stability and high gas permeability. 1-Phenyl-2-p-(t-butyldimethylsiloxy)phenylacetylene polymerizes into a high-molecular-weight polymer. This polymer is soluble in common organic solvents to provide a free-standing membrane. Desilylation of this membrane yields a poly(diphenylacetylene) having free hydroxyl groups, which is the first example of a highly polar group-carrying poly(diphenylacetylene). The P/P and P/P permselectivity ratios of poly(1-phenyl-2-p-hydroxylphenylacetylene) membrane are as large as 47.8 and 45.8, respectively, while keeping relatively high P of 110 barrers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5028–5038, 2006  相似文献   

3.
Homogeneously fullerene‐dispersed membranes were prepared under the conditions in which a 10 wt % poly(1‐trimethylsilyl‐1‐propyne) solution containing 0.5 wt % fullerene was dried under a reduced pressure of 50 cmHg at 100 °C. UV‐vis spectra and microscopic observations of the fullerene membranes indicated that the fullerene was homogeneously dispersed in the membranes. The permeability coefficients of 1‐butene were found to be higher than those of n‐butane in the fullerene membranes, although the permeability coefficients of olefin gases were nearly equal to those of paraffin gases having the same number of carbon in poly(1‐trimethylsilyl‐1‐propyne) membranes containing no fullerene. Pressure dependence of permeability coefficients was clearly observed for the permeation of carbon dioxide, ethylene, ethane, 1‐butene, and n‐butane through the fullerene membranes, while no significant dependence was found for poly(1‐trimethylsilyl‐1‐propyne) membranes except for the permeation of 1‐butene and n‐butane. The pressure dependence of the permeability was explained by the dual‐mode sorption model. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1749–1755, 2000  相似文献   

4.
Polymerization of new 1-(trimethylsilyl)-1-propyne homologs containing two silicon atoms [CH3C?CSi(CH3)2CH2Si(CH3)3 and CH3C?CSi(CH3)2CH2CH2Si(CH3)3] was investigated by use of Ta and Nb catalysts. CH3C?CSi(CH3)2CH2Si(CH3)3 was polymerized quantitatively by TaCl5 alone to provide a polymer having molecular weight over 106. CH3C?CSi(CH3)2CH2CH2Si(CH3)3 was polymerized in good yield by an equimolar mixture of TaCl5 with an appropriate organometallic cocatalyst such as Ph4Sn to give a polymer with molecular weight of ca. 4 X 105. Nb catalysts were less active toward these monomers than the corresponding Ta catalysts. These two kinds of polymers had alternating double bonds along the main chain according to IR and 13C-NMR spectra. Both polymers were white solids completely soluble in low-polarity solvents like toluene, and solution casting afforded uniform, tough films. These polymers were thermally fairly stable, and their softening points were above 350°C. Films of these polymers showed smaller oxygen permeability coefficients [P = 4 × 10?9 – 8 × 10?9 cm3(STP) · cm/(cm2·sec·cmHg)] but larger separation factors [(P/P) = 3.4 – 3.6] than a poly[1-(trimethylsilyl)-1-propyne] film.  相似文献   

5.
Poly(phenylacetylene)s containing L ‐valine residues (P 1 ) with (a)chiral pendant terminal groups R(*) [?(HC?C{C6H4CONHCH[CH(CH3)2]COO? R(*)})n?]; R(*) = 1‐octyl (P 1 o), (1S,2R,5S)‐(+)‐menthyl [P 1 (+)], (1R,2S,5R)‐(?)‐menthyl [P 1 (?)] are designed and synthesized. The polymers are prepared by organorhodium catalysts in high yields (yield up to 88%) with high molecular weights (Mw up to ?6.4 × 105). Their structures and properties are characterized by NMR, IR, TGA, UV, and circular dichroism analyses. All the polymers are thermally fairly stable (Td ≥ 320 °C). The chiral moieties induce the poly(phenylacetylene) chains to helically rotate in a preferred direction. The chirality of the pendant terminal groups affects little the helicity of the polymers but their bulkiness stabilizes the helical conformation against solvent perturbation. The backbone conjugation and chain helicity of the polymers can be modulated continuously and reversibly by acid. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2117–2129, 2006  相似文献   

6.
A series of amphiphilic graft copolymers of poly (vinylidene fluoride‐co‐chlorotrifluoroethylene)‐g‐poly(2‐vinyl pyridine), P (VDF‐co‐CTFE)‐g‐P2VP, with different degrees of P2VP grafting (from 26.3 to 45.6 wt%) was synthesized via one‐pot atom transfer radical polymerization (ATRP). The amphiphilic properties of P (VDF‐co‐CTFE)‐g‐P2VP graft copolymers allowed itself to self‐assemble into nanoscale structures. P (VDF‐co‐CTFE)‐g‐P2VP graft copolymers were introduced into neat P (VDF‐co‐CTFE) as additives to form blending membranes. When two different solvents, N‐methyl‐2‐pyrrolidone (NMP) and dimethylformamide (DMF), were used, specific organized crystalline structures were observed only in the NMP systems. P (VDF‐co‐CTFE)‐g‐P2VP played a pivotal role in controlling the morphology and pore structure of membranes. The water flux of the membranes increased from 57.2 to 310.1 L m?2 h?1 bar?1 with an increase in the PVDF‐co‐CTFE‐g‐P2VP loading (from 0 to 30 wt%) due to increased porosity and hydrophilicity. The flux recovery ratio (FRR) increased from 67.03% to 87.18%, and the irreversible fouling (Rir) decreased from 32.97% to 12.82%. Moreover, the pure gas permeance of the membranes with respect to N2 was as high as 6.2 × 104 GPU (1 GPU = 10–6 cm3[STP]/[s cm2 cmHg]), indicating their possible use as a porous polymer support for gas separation applications.  相似文献   

7.
Phenylacetylene (PA) derivatives having two polar groups (ester, 2a – d ; amide, 4) or one cyclic polar group (imide, 5a – c ) were polymerized using (nbd)Rh+[(η6‐C6H5)B?(C6H5)3] catalyst to afford high molecular weight polymers (~1 × 106 – 4 × 106). The hydrolysis of ester‐containing poly(PA), poly( 2a) , provided poly(3,4‐dicarboxyPA) [poly ( 3 )], which could not be obtained directly by the polymerization of the corresponding monomer. The solubility properties of the present polymers were different from those of poly(PA) having no polar group; that is, poly( 2a )–poly( 2d ) dissolved in ethyl acetate and poly( 4 ) dissolved in N,N‐dimethylformamide, while poly(PA) was insoluble in such solvents. Ester‐group‐containing polymers [poly( 2a )–poly( 2d )] afforded free‐standing membranes by casting from THF solutions. The membrane of poly( 2a ) showed high carbon dioxide permselectivity against nitrogen (PCO2/PN2 = 62). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5943–5953, 2006  相似文献   

8.
N-Carbazolylacetylene (CzA) was polymerized in the presence of various transition metal catalysts including WCl6, MoCl5, [Rh(NBD)Cl]2, and Fe(acac)3 to give polymers in good yields. The polymers produced with W catalysts were dark purple solids and soluble in organic solvents such as toluene, chloroform, etc. The highest weight-average molecular weight of poly(CzA) reached about 4 × 104. In the UV–visible spectrum in CHCl3, poly(CzA) exhibited an absorption maximum around 550 nm (εmax = 4.0 × 103 M−1 cm−1) and the cutoff wavelength was 740 nm, showing a large red shift compared with that of poly(phenylacetylene) [poly(PA)]. Poly(CzA) began to lose weight in TGA under air at 310°C, being thermally more stable than poly(PA) and poly[3-(N-carbazolyl)-1-propyne]. Poly(CzA) showed a third-order susceptibility of 18 × 10−12 esu, which was 2 orders larger than that of poly(PA). © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2489–2492, 1998  相似文献   

9.
Surface modification of poly [1-(trimethylsilyl)-1-propyne] (PTMSP) membranes bybromine vapor has been studied. It is shown that Br/C atomic ratio at the surfaces increased withthe time of bromination until about 60 min, then it reached a plateau. The results of XPS and IRstudies indicated that the addition of bromine to double bonds and the replacement of H on CH_3 bybromine had taken place so that a new peak at 286.0 eV (C--Br)in C_(1s) spectra and some newbands, e. g. at 1220 and 580cm~(-1) in IR spectra were formed. The fact,t Po_2, permeability ofoxygen, decreased and α_(O_2/N_2), separation factor of oxygen relative to nitrogen, increased withbromination time, shows that surface modification of PTMSP by bromine may be an efficient approach to prepare PTMSP membranes used for practical gas separations.  相似文献   

10.
A series of block copolystyrene derivatives, poly{[4‐(4‐sulfobutyloxy)styrene]xblock‐[4‐(n‐butoxystyrene)]y} (PSBOSxb‐PnBOSy), containing a flexible alkylsufonated side chain and hydrophobic alkoxy chain with various ion exchange capacities (IECs) have been synthesized based on living anionic polymerization. The resulting crosslinked membranes were prepared using 4,4′‐methylene‐bis[2,6‐bis(hydroxyethyl)phenol] as the crosslinker in the presence of methanesulfonic acid. The crosslinked PSBOS2.2b‐PnBOS1 membrane with IEC of 2.89 mequiv g?1 displays a high proton conductivity (0.01 S cm?1) at 30% relative humidity and 80 °C, which is comparable to that of Nafion. The well‐developed phase separation and the continuous hydrophilic domains in the crosslinked PSBOS2.2b‐PnBOS1 membranes have been observed in a transmission electron microscope image. Moreover, the dynamic mechanical analysis measurement and Fenton's reagent testing show that the crosslinked PSBOSxb‐PnBOSy membranes have good mechanical properties and oxidative stability. These results indicate that the introduction of flexible alkylsulfonated side chains to the polystyrene main chains positively affect both the proton conductivity and oxidative stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

11.
5‐Ethynyl‐2,2′‐bipyridine ( 1 ; bpyC≡CH) polymerized in the presence of catalytic amounts of [RhF(COD)(PPh3)] or [Rh(μ‐OH)(COD)]2 (COD = 1,5‐cyclooctadiene) in 74–91% yields. In contrast, [Rh(μ‐X)(NBD)]2 (X = Cl or OMe; NBD = norbornadiene) did not catalyze the polymerization of 1 or gave low yields of the polymer. The obtained polymer, poly(5‐ethynyl‐2,2′‐bipyridine) [ 2 ; (bpyC?CH)n], was highly stereoregular with a predominant cis–transoidal geometry. Random copolyacetylenes containing the 2,2′‐bipyridyl group with improved solubility in organic solvents were obtained by the treatment of a mixture of 1 and phenylacetylene ( 3 ) or 1‐ethynyl‐4‐n‐pentyl‐benzene with catalytic amounts of [RhF(COD)(PPh3)]. A block copolymer of 1 and 3 was prepared by the addition of 1 to a poly(phenylacetylene) containing a living end. The reaction of 2 with [Mo(CO)6] produced an insoluble polymer containing [Mo(CO)4(bpy)] groups, whereas with [RuCl2(bpy)2] or [Ru(bpy)2(CH3COCH3)2](CF3SO3)2, it gave soluble metal–polymer complexes containing [Ru(bpy)3]2+ groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43:3167–3177, 2005  相似文献   

12.
(o-Methylphenyl)acetylene polymerized with high yields in the presence of W and Mo catalysts. W catalysts were more active than the corresponding Mo catalysts. The weight-average molecular weight of the polymer formed with W(CO)6–CCl4hv reached 8 × 105, being higher than the maximum value (ca. 2 × 105) for poly(phenylacetylene). The polymer had the structure $\rlap{--} [{\rm CH} \hbox{=\hskip-1pt=} {\rm C}(o - {\rm CH}_3 {\rm C}_6 {\rm H}_4 )\rlap{--} ]_n $. The stereochemical structure of the main chain could be determined by 13C-NMR; the cis content varied in a range of 41–61% depending on the polymerization conditions. The present polymer was thermally more stable than poly(phenylacetylene) according to thermogravimetric analysis. Interestingly, this polymer possessed deeper color than poly(phenylacetylene), and showed a fairly strong absorption in the visible region.  相似文献   

13.
Sharpless epoxidation of (E)-1-(trimethylsilyl)[1-2H1]oct-1-en-3-o1 ( 3a ) yielded (1S,2S,3S)- and (1R,2R,3R)-1-(trimethylsilyl)-1,2-epoxy[1-2H1]octan-3-ols ( 4a and 4b , resp.) which were converted in three steps into (S)- and (R)-fluoro[ 2H1]acetic acid ( 7a and 7b , resp.) in good yields. Their high isotopic and optical purity was established by 1H- and 19F-NMR, mass, and circular-dichroism spectroscopy.  相似文献   

14.
A group of new amphiphilic poly(phenylacetylene)s bearing polar oligo(ethylene oxide) pendants, poly{4‐[2‐(2‐hydroxyethoxy)ethoxy]phenylacetylene} ( 1 ), poly(4‐{2‐[2‐(2‐hydroxyethoxy)‐ethoxy]ethoxy}phenylacetylene) ( 2p ), poly(3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy}phenylacetylene) ( 2m ), poly(4‐{2‐[2‐(2‐methanesulfonyloxyethoxy)ethoxy]ethoxy}phenylacetylene) ( 3 ), poly(4‐{2‐[2‐(p‐toluenesulfonyloxyethoxy)ethoxy]ethoxy}phenylacetylene) ( 4 ), poly(4‐{2‐[2‐(2‐trimethylsilyloxy‐ethoxy)ethoxy] ethoxy}phenylacetylene) ( 5 ), and poly(4‐{2‐[2‐(2‐chloroethoxy)ethoxy]ethoxy}phenylacetylene) ( 6 ), were synthesized with organorhodium complexes as the polymerization catalysts. The structures and properties of the polymers were characterized with IR, UV, NMR, and thermogravimetric analysis. 1 , 2p , and 2m , the three polymers containing pendants with hydroxyl groups, were oligomeric or insoluble. The organorhodium complexes worked well for the polymerization of the monomers without hydroxyl groups, giving soluble polymers 3 – 6 with a weight‐average molecular weight up to ~160 × 103 and a yield up to 99%. Z‐rich polymers 3 – 6 could be prepared by judicious selections of the catalyst under optimal conditions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1153–1167, 2006  相似文献   

15.
The reactivity of biradicaloid [P(μ‐NTer)]2 was employed to activate small molecules bearing single, double, and triple bonds. Addition of chalcogens (O2, S8, Sex and Tex) led to the formation of dichalcogen‐bridged P2N2 heterocycles, except from the reaction with molecular oxygen, which gave a P2N2 ring featuring a dicoordinated PIII and a four‐coordinated PV center. In formal [2πe+2πe] addition reactions, small unsaturated compounds such as ethylene, acetylene, acetone, acetonitrile, tolane, diphenylcarbodiimide, and bis(trimethylsilyl)sulfurdiimide are readily added to the P2N2 heterocycle of the biradicaloid [P(μ‐NTer)]2, yielding novel heteroatom cage compounds. The synthesis, reactivity, and bonding of the biradicaloid [P(μ‐NTer)]2 were studied in detail as well as the synthesis, properties, and structural features of all addition products.  相似文献   

16.
The copolymerization of p-diethynylbenzene (PDEB) with phenylacetylene (PhA), 4, 4'-diethynylbiphenyl (DEBP)or m-diethynylbenzene (MDEB) are studied by varying mole ratios of monomers. When the mole ratios of PDEB/PhA are less or equal to 1/5, the copolymers are soluble and fusible, but the other copolymers are insoluble and infusible. The results show that the good solvent of cross-linked copolymers is benzene and their solubility parameter is 9.15 cal~(0.5).cm(-1.5). And their swellability (θ_p), Huggins parameter (χ), density (d_4~(25)) and the average molecular weights between crosslinks (c) are measured. It is found that θp and c of copolymers are greater but d_4~(25) is less than that of respective homopolymers. IR spectra show that the copolymers have transoid configuration and small number of unreacted ethynyl groups exist in the copolymers. The mechanism about the polymerization or acetylenic derivatives initiated by (Ph_3P)_2PdCl_2 is discussed.  相似文献   

17.
Two calix[4]arene derivatives, in the partial cone conformation, with sulfur-containing functionalities, were tested as neutral carrier ionophores in potentiometric silver-selective electrodes of conventional membrane and membrane-coated glassy carbon electrode types. Comparison with a calix[4]arene in the cone conformation was made. The membranes were prepared using either 2-nitrophenyl octyl ether or bis(ethylhexyl)sebacate as plasticizers and potassium tetrakis(p-chlorophenyl)borate as the lipophilic salt in a poly(vinyl chloride) matrix. Both calix[4]arenes yielded electrodes of good sensitivity (approx. 47 mV dec−1) in the range 10−4–10−1 M and excellent selectivity [log KAg,MH+ < −1.5] of transition, alkali and heavy metal cations, including sodium, mercury(II) and lead(II) cations. Temperature effects and reproducibility of response were determined and the interfering effects of mercury(II) and lead (II) ions on the membranes were noted. The partial cone conformation allows improved selectivity over certain cations relative to calix[4]arenes in the cone conformation.  相似文献   

18.
Fully cyclized polyimides based on octadecyl- or hexadecyl 3,5-diaminobenzoate and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride or 4,4′-oxydiphthalic anhydride were synthesized and deposited by the Langmuir-Schaefer technique onto a poly(1-trimethylsilylprop-1-yne) support. Composite membranes thus prepared show selective gas permeation for N2, O2, CO2, H2 with permeation rates in the range of 10−5 to 10−7 cm3 (STP)/(cm2 · s · cmHg).  相似文献   

19.
The trans‐bis(trimethylsilyl)chalcogenolate palladium complexes, trans‐[Pd(ESiMe3)2(PnBu3)2] [E = S ( 1 ) and Se ( 2 )] were synthesized in good yields and high purity by reacting trans‐[PdCl2(PBu3)2] with LiESiMe3 (E = S, Se), respectively. These complexes were characterized by 1H, 13C{1H}, 31P{1H} (and 77Se{1H}) NMR spectroscopy and single‐crystal X‐ray analysis. The reaction of 2 with propionyl chloride led to the formation of trans‐[Pd(SeC(O)CH2CH3)2(PnBu3)2] ( 3 ), a trans‐bis(selenocarboxylato) palladium complex and thus established a new method for the formation of this type of complex. Complex 3 was characterized by 1H, 13C{1H}, 31P{1H} and 77Se{1H} NMR spectroscopy and a single‐crystal X‐ray structure analysis.  相似文献   

20.
The polymerization of (−)‐p‐[(tert‐butylmethylphenyl)silyl]phenylacetylene (t‐BuMePhSi*PA) and (+)‐p‐[{methyl(α‐naphthyl)phenyl}silyl]phenylacetylene (MeNpPhSi*PA) with the [(nbd)RhCl]2 Et3N catalyst yielded polymers with very high molecular weights over 2 × 106 in high yields. The optical rotations of the formed poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA) were as high as −356 and −150° (c = 0.11 g/dL in CHCl3), respectively. The circular dichroism (CD) spectrum of poly(t‐BuMePhSi*PA) in CHCl3 exhibited very large molar ellipticities ([θ]) in the UV region: [θ]max = 9.2 × 104 ° · cm2 · dmol−1 at 330 nm and −8.0 × 104 ° · cm2 · dmol−1 at 370 nm. The [θ]max values of poly(MeNpPhSi*PA) were also fairly large: [θ]max = 7.1 × 104 ° · cm2 · dmol−1 at 330 nm and −5.3 × 104 ° · cm2 · dmol−1 at 370 nm. The optical rotations of poly(t‐BuMePhSi*PA) and poly(MeNpPhSi*PA), measured in tetrahydrofuran, chloroform, and toluene solutions, were hardly dependent on temperature in the range 22–65 °C. The CD effects of these polymers hardly changed in the temperature range 28–80 °C, either. These results indicate that the helical structures of these polymers are thermally appreciably stable. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 71–77, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号