首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Glass transition in the system poly(methyl methacrylate)/compressed gas was studied as a function of the gas pressure p using a high-pressure Tian-Calvet heat flow calorimeter. Measurements were made on PMMA-CH4-C2H4, and ;-CO2 at pressures to 200 atm. All three gases plasticize the polymer leading to depression of the glass transition temperature Tg. Trends in the Tg depression were the same as those reported for the solubility of these gases in PMMA; the higher the solubility the larger the depression in Tg. CO2 was found to be the most effective plasticizer producing a depression of about 40°C at a pressure of about 37 atm. In the low-pressure limit, the pressure coefficient of the glass transition temperature (dTg/dp) was found to be about −0.2°C atm-1 for PMMA-CH4, the same as that observed for polystyrene-CH4. For PMMA-C2H4, the pressure coefficient was −0.7°C atm-1, which is lower than the value of −0.9°C atm-1 observed for PS-C2H4. The pressure coefficient for PMMA-CO2 was found to be about −1.2°C atm-1, which is larger than the value of −0.9°C atm-1 observed for PS-CO2. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Abstract

We report a method of measuring the densities of liquids at intermediate temperatures which employs Archimedes' Principle in a two-sinker arrangement. This method is then used to measure the densities of pure liquid calcium, strontium, and barium. We find ρ(Ca) = 1.4931 ? 1.37 × 10?4 T(°C) from 850 ? 950°C, ρ(Sr) = 2.5547 ? 2.83 × 10?4 T(°C) from 780 ? 880°C, and ρ(Ba) = 3.5561 ? 2.99 × 10?4 T(°C) from 730 ? 830°C, where the units are gm/cm3. We use relations critical constants for these liquids to estimated dρ/dT, and compare these values of dρ/dT with those for other liquid metals; we also compare our results with recent x-ray diffraction data for these liquid metals.  相似文献   

3.
A theoretical analysis of the conformational energies of poly(dichlorophosphazene) (PDCP) is presented. The results indicate that the bond pair P? N? P possesses a considerable conformational freedom, whereas the bond pair N? P? N is relatively rigid. This difference explains the low glass transition temperatures Tg and large end-to-end distances measured for polyphosphazenes. A statistical model containing four rotational isomers (ie., trans, gauche, cis, and negative gauche) is developed and used to calculate unperturbed dimensions and dipole moments of PDCP. The results, obtained at 25°C with n = 400 skeletal bonds (200 repeating units), were Cn = 〈r20/nl2 = 13.5; CT = 103d(ln〈r20)/dT = ?3.0 K?1; Dn = 〈μ2〉/nμ = 0.35; DT = 103d(ln〈μ2〉)/dT = ?3.4 K?1. All the calculated magnitudes are extremely sensitive to the energy Eσ that controls the statistical weights of the conformations tg, tc, tg?, gt, ct, and g?t relative to tt for the bond pair P? N? P. A qualitative explanation for this sensitivity is discussed.  相似文献   

4.
Four nanoporous carbons obtained from different polymers: polypyrrole, polyvinylidene fluoride, sulfonated styrene–divinylbenzene resin, and phenol–formaldehyde resin, were investigated as potential adsorbents for carbon dioxide. CO2 adsorption isotherms measured at eight temperatures between 0 and 60 °C were used to study adsorption properties of these polymer-derived carbons, especially CO2 uptakes at ambient pressure and different temperatures, working capacity, and isosteric heat of adsorption. The specific surface areas and the volumes of micropores and ultramicropores estimated for these materials by using the density functional theory-based software for pore size analysis ranged from 840 to 1990 m2 g?1, from 0.22 to 1.47 cm3 g?1, and from 0.18 to 0.64 cm3 g?1, respectively. The observed differences in the nanoporosity of these carbons had a pronounced effect on the CO2 adsorption properties. The highest CO2 uptakes, 6.92 mmol g?1 (0 °C, 1 atm) and 1.89 mmol g?1 (60 °C, 1 atm), were obtained for the polypyrrole-derived activated carbon prepared through a single carbonization-KOH activation step. The working capacity for this adsorbent was estimated to be 3.70 mmol g?1. Depending on the adsorbent, the CO2 isosteric heats of adsorption varied from 32.9 to 16.3 kJ mol?1 in 0–2.5 mmol g?1 range. Overall, the carbons studied showed well-developed microporosity and exceptional CO2 adsorption, which make them viable candidates for CO2 capture, and for other adsorption and environmental-related applications.  相似文献   

5.
The stability constants (for the formation) of LaBr2+ and LaBr2+ ions were obtained potentiometrically at various ionic strengths at 20°, 25°, 30°, and 35°. The molal free energy was given by ΔG°=-2,444.04+2.67T log T+1.39T. The thermodynamic quantities for the formation of LaBr2+ were evaluated as ΔHf° = ?207.9, ΔGf° = ?199.1 kcal mole?1 and S° = ?29.5 cal. deg?1 mole?1 at 25°.  相似文献   

6.
A poly(acrylamide) was synthesized from N α -Boc-N ? -acrolyl-l-lysylglycine methyl ester via radical polymerization. This polymer typically had Mn ~ 100,000 g/mol, Mw ~ 300,000 g/mol, and a Tg of 93°C. Removal of Boc with TFA and cyclization with DABCO? in DMSO at 65°C afforded a soluble piperazinedione-containing polymer that had a Tg of 157°C and thermal stability up to 300°C. These results demonstrate a viable and efficient synthetic route to piperazinedione-containing polyacrylamides of high molecular weight. Related polymers that incorporate substituted indane moieties could be useful high Tg materials for fabrication of LC and NLO devices.  相似文献   

7.
The thermal-mechanical properties of unsaturated polyester (UP) composite were enhanced by the dispersion of silica aerogel (SA) with preserved pores. Low-cost SA was prepared from rice husk via the sol-gel process and ambient pressure drying. A new method was proposed to encapsulate the hydrophobic aerogel surface pores with hydrophilic polyvinyl alcohol (PVA) film using the fluidized-bed coating process. The dispersion of PVA-coated aerogel with preserved pores in the polyester matrix resulted in an increase of specific compressive strength (44.1?MPa?·?cm3?g?1), thermal insulation (0.23?W?m?1?K?1), and thermal stability (Tonset?=?310°C), but decreased the glass transition temperature (Tg?=?260°C).  相似文献   

8.
Sorption and dilation isotherms for argon in poly(ethyl methacrylate) (PEMA) are reported for pressures up to 50 atm over the temperature range 5–85°C. At temperatures below the glass transition (Tg=61°C), sorption isotherms are well described by the dual-mode sorption model; and isotherms above Tg follow Henry's law. However, isotherms for dilation due to sorption are linear in pressure at all temperatures over the range investigated. Partial molar volumes of Ar in PEMA are obtained from these isotherms. The volumes are approximately constant above Tg (about 40 cm3/mol), whereas the volumes below Tg are smaller and dependent on both temperature and concentration (19–26 cm3/mol). By analyzing the experimental data according to the dual-mode sorption and dilation model, the volume occupied by a dissolved Ar molecule and the mean size of microvoid in the glass are estimated to be 67 129 Å3, respectively. The cohesive energy density of the polymer is also estimated as 61 cal/cm3 from the temperature dependence of the dual-mode parameters.  相似文献   

9.
Dielectric methods have been employed to study the high-pressure behavior of a polyurethane elastomer (Solithane 113) in the vicinity of its α transition. The α-loss peak is shifted to higher temperatures and broadened somewhat with the application of hydrostatic pressure up to 6.4 kbars. The slope of Tα vs. P, or dTα/dP, obtained at low frequencies was found to be equal to dTg/dP obtained by a volumetric method. Moreover, it attained a nonzero limiting value at high pressures for each frequency tested (3—30,000 Hz) and the limiting value itself increased with increasing frequency from 10.5°C/kbar at 3 Hz to 18°C/kbar at 30,000 Hz. The activation enthalpy ΔH* was found to be nearly constant over the pressure range tested, but the activation volume ΔV* decreased with increasing pressure. The relation dTα/dP = TV*/ΔH*) was shown to hold for the elastomer.  相似文献   

10.
The application of hypergolic ionic liquids as propellant fuels is a newly emerging area in the fields of chemistry and propulsion science. Herein, a new class of [imidazolyl?amine?BH2]+‐cation‐based ionic liquids, which included fuel‐rich anions, such as dicyanamide (N(CN)2?) and cyanoborohydride (BH3CN?) anions, were synthesized and characterized. As expected, all of the ionic liquids exhibited spontaneous combustion upon contact with the oxidizer 100 % HNO3. The densities of these ionic liquids varied from 0.99–1.12 g cm?3, and the heats of formation, predicted based on Gaussian 09 calculations, were between ?707.7 and 241.8 kJ mol?1. Among them, the salt of compound 5 , that is, (1‐allyl‐1H‐imidazole‐3‐yl)?(trimethylamine)?dihydroboronium dicyanamide, exhibited the lowest viscosity (168 MPa s), good thermal properties (TgTd>130 °C), and the shortest ignition‐delay time (18 ms) with 100 % HNO3. These ionic fuels, as “green” replacements for toxic hydrazine‐derivatives, may have potential applications as bipropellant formulations.  相似文献   

11.
Thermal Decomposition Kinetics of Triethylene Glycol Dinitrate   总被引:1,自引:0,他引:1  
陈沛  赵凤起  罗阳  胡荣祖  李上文  高茵 《中国化学》2004,22(10):1078-1082
Introduction Triethylene glycol dinitrate (TEGDN) is a novel en-ergetic material containing two groups of NO2, which can be used as an energetic plasticizer ingredient in propellants because of its excellent proformance.1 It exhibits lower impact sensitivity, better thermostability, weaker poisonousness and volatility, and stronger effec-tiveness of plasticizing cellulose nitrate than nitroglyc-erine (NG). As a new plasticizer TEGDN has good ap-plication prospects in the near future. The…  相似文献   

12.
This article studies the thermokinetics and safety parameters of cumene hydroperoxide (CHP) manufactured in the first oxidation tower. Vent sizing package 2 (VSP2), an adiabatic calorimeter, was employed to determine reaction kinetics, the exothermic onset temperature (T 0), reaction order (n), ignition runaway temperature (T C, I), etc. The n value and activation energy (E a) of 15?mass% CHP were calculated to be 0.5 and 120.2?kJ?mol?1, respectively. The heat generation rate (Q g) of 15?mass% CHP compared with hS (cooling rate)?=?6.7?J?min?1?K?1 of heat balance, the T S,E and the critical extinction temperature (T C, E) under 110?°C of ambient temperature (T a) were calculated 111 and 207?°C, respectively. The Q g of 15?mass% CHP compared with hS?=?0.3?J?min?1?K?1 of heat balance was applied to determine the T C, I that was evaluated to be 116?°C. This article describes the best operating conditions when handling CHP, starting from the first oxidation tower.  相似文献   

13.
Volume flow of poly(methyl methacrylate) (PMMA) (M?n = 43,000 and Tg = 384) has been measured in an Instron Capillary Rheometer. Elastic modulus of the longitudinal wave, longitudinal volume viscosity, initial longitudinal volume viscosity, and retardation times are described at temperatures above Tg (418–483K) and compression rates of about 1.00–200.00 × 105 s?1. An initial increase followed by a decrease in longitudinal volume viscosity has been observed as the compression rate increases and the volume deformation decreases, this last behavior being at the lowest values of the compression rate (6.0 and 30.0 × 10?5 s?1) a typical nonequilibrium one. ηL also increases with increasing temperature (Tg decreases 0.18°C/MPa), and volume flow activation energy decreases as the volume deformation increases.  相似文献   

14.
Hydrostatic pressure usually increases the glass transition temperature Tg of a polymer glass by decreasing its free volume; if the pressurizing environment is soluble in the polymer, however, one might expect an initial decrease in Tg with pressure as the polymer is plasticized by the environment. Just such a minimum in the Tg of polystyrene (PS) is observed as the pressure of CO2 gas is increased over the range 0.1–105 MPa from both ultrasonic (1 MHz) measurements of Young's modulus E and static measurements of the creep compliance J. A time-temperature-pressure superposition law is obeyed by PS which allows a master curve for the compliance to be constructed and shift factors to be determined. A master curve for E is then obtained by using the Boltzmann superposition principle. The compliance J reaches a maximum, and E and Tg reach minima, at a CO2 pressure of ca. 20 MPa at both 34 and 45°C, which are above the critical temperature (31°C) of CO2. At the minimum, Tg is 41 at 45°C and 36 at 34°C, the larger depression at 34°C evidently corresponding to the higher solubility of CO2 at the lower temperature. The plasticization effect due to CO2 can be isolated by subtracting the effect of hydrostatic pressure alone from the experimental data. The results leave no doubt that at high pressures CO2 gas is a severe plasticizer for polystyrene.  相似文献   

15.
Highly crystalline samples of cellulose triacetate I (CTA I) were prepared from highly crystalline algal cellulose by heterogeneous acetylation. X‐ray diffraction of the prepared samples was carried out in a helium atmosphere at temperatures ranging from 20 to 250 °C. Changes in seven d‐spacings were observed with increasing temperature due to thermal expansion of the CTA I crystals. Unit cell parameters at specific temperatures were determined from these d‐spacings by the least squares method, and then thermal expansion coefficients (TECs) were calculated. The linear TECs of the a, b, and c axes were αa = 19.3 × 10?5 °C?1, αb = 0.3 × 10?5 °C?1 (T < 130 °C), αb = ?2.5 × 10?5 °C?1 (T > 130 °C), and αc = ?1.9 × 10?5 °C?1, respectively. The volume TEC was β = 15.6 × 10?5 °C?1, which is about 1.4 and 2.2 times greater than that of cellulose Iβ and cellulose IIII, respectively. This large thermal expansion could occur because no hydrogen bonding exists in CTA I. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 517–523, 2009  相似文献   

16.
The thermally stimulated depolarization current (TSDC) technique has been used to study the slow molecular mobility of polysulfone in the glassy state and in the glass transformation region, i.e., in the temperature ranging from ?155 to 183 °C. Since the polysulfone is a rigid polymer without polar side-groups, a broad and low-intensity secondary relaxation was detected in the temperature region from ?120 °C up to the glass transition; the activation energy of the motional modes of this secondary relaxation is in the range between 35 and 100 kJ mol?1. The glass transition temperature of polysulfone provided by the TSDC technique is T M = T g = 176 °C (at 4 °C min?1). The relaxation time at this temperature is τ(T g) = 33 s and the fragility index was found to be m = 91. Our results are compared with literature values obtained by dynamic mechanical analysis and by dielectric relaxation spectroscopy. The amorphous polysulfone was also characterized by DSC; a glass transition signal with an onset at T on = 185.5 ± 0.3 °C (heating rate 10 °C min?1) was detected, with ΔC p = 0.21 ± 0.01 J g?1 °C?1.  相似文献   

17.
Second harmonic generation (SHG) was used to measure the temperature dependence of the reorientation activation volume of 4-(diethylamino)-4′-nitrotolane (DEANT) in poly(methyl methacrylate) (PMMA). The decay of the SHG signal from films of DEANT/PMMA was recorded at hydrostatic pressures up to 3060 atm and at different temperatures between 25°C below the glass transition temperature to 35°C above it. The activation volume, ΔV*αβ associated with the long range α-type motion of the polymer remained constant at 213 ± 10 Å3 between Tg − 25°C and Tg + 10°C. At higher temperatures, ΔV*αβ decreased linearly with increasing temperature. The activation volume, ΔV*αβ, associated with short range secondary relaxations was constant over the entire temperature range with a value of 77 ± 10 Å3. The data suggest that above Tg chromophore reorientation is coupled to both the long range and local motions of the polymer; whereas, well below Tg chromophore reorientation is closely coupled to the local relaxations of the polymer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 901–911, 1998  相似文献   

18.
The melt viscosity, the glass transition, and the effect of pressure on these are analyzed for polystyrene on the basis of the Tammann-Hesse viscosity equation: log η = log A + B/(T ? T0). Evidence that the glass transition is an isoviscosity state (log ηg ? 13) for lower molecular weight fractions (M < Mc) is reviewed. For a polystyrene fraction of intermediate molecular weight (M ? 19,000; tg = 89°C.), it is shown that B is independent of the pvT state of the polymer liquid and that dT0/dP = dTg/dP. This is consistent with the postulate that B is determined by the internal barriers to rotation in the isolated polymer chain. Relationships are derived for flow “activation energies” at constant pressure and at constant volume, and for the “activation volume.” Values for polystyrene along the zero-pressure isobar and along the constant viscosity, glasstransition line are reported. For the latter, ΔVg* is constant and corresponds to about 10 styrene units. The “free volume” viscosity equation: log η = log A + b/2.3?, is reexamined. For polystyrene and polyisobutylene, ?g/b = 0.03, but ?g and b themselves differ appreciably in these polymers. The parameter b is the product of an equilibrium term Δα and the kinetic term B, and none of these is a “universal” constant for different polymers. The physical significance of the free volume parameter ?, particularly with regard to the “excess” liquid volume, remains undefined. Two new relationships for dTg/dP, one an exact derivation and the other an empirical correlation, are presented.  相似文献   

19.
Photon correlation spectra of polarized scattered light from poly(n-hexylmethacrylate) PHMA (Mw = 1.6·105, Tg = ?5°C) have been studied in the temperature range of ?2–25°C. The experimental time correlation functions over the time range 10?6?102 s were represented by the Kohlrausch-Williams-Watts (KWW) function exp{?(t/τ)β} with a virtually temperature-independent distribution parameter β = 0.27 ± 0.02. The observed relaxation functions were also analyzed in terms of a continuous distribution of retardation times L(τ) by means of a direct inverse Laplace transformation. The computed L(τ) distributions reveal a broad single peak structure in agreement with the results of the single KWW fit. The temperature dependence of τ is very similar to that of the shift factors obtained from measurements of the shear modulus and the stress relaxation modulus in the glass-rubber region. Conversely, the values of τ compare well with those extracted from the experimental dielectric loss peaks consistently represented in the time domain by the KWW function. These findings suggest that the slow density fluctuations in bulk PHMA are associated with the primary glass-rubber or α-relaxation, which, however, displays an unusual low apparent Arrhenius activation energy and a rather low β value. PHMA exhibits significant dynamic light scattering with correlation times faster than 10?6 s near Tg. © 1992 John Wiley & Sons, Inc.  相似文献   

20.
The sorption and transport properties of CO2 in miscible PS/PVME blends at 20°C are reported as a function of pressure from 1 to 15 atm. The complex shape of isotherms for glassy blends and the concentration-dependent diffusion coefficient for rubbery blends reveal a plasticization by sorbed CO2. The significant depression in Tg has to be taken into account in the analysis of the sorption data. Diffusion coefficient for CO2 passes through a minimum when plotted against the blend composition. Such a behavior can be quantitatively related to the negative volume mixing of the PS/PVME system in the framework of the theories based on unoccupied volume. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号