首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bis(cyclopentadienyl)methane-bridged Dinuclear Complexes, V[1]. – Heteronuclear Co/Rh-, Co/Ir-, Rh/Ir-, and Ti/Ir Complexes with the Bis(cyclopentadienyl)methane Dianion as Bridging Ligand* The lithium and sodium salts of the [C5H5CH2C5H4]- anion, 1 and 2 , react with [Co(CO)4I], [Rh(CO)2Cl]2, and [Ir(CO)3Cl]n to give predominantly the mononuclear complexes [(C5H5-CH2C5H4)M(CO)2] ( 3, 5, 7 ) together with small amounts of the dinuclear compounds [CH2(C5H4)2][M(CO)2]2 ( 4, 6, 8 ). The 1H- and 13C-NMR spectra of 3, 5 , and 7 prove that the CH2C5H5 substituent is linked to the π-bonded ring in two isomeric forms. Metalation of 5 and 7 with nBuLi affords the lithiated derivatives 9 and 10 from which on reaction with [Co(CO)4I], [Rh(CO)2Cl]2, and [C5H5TiCl3] the heteronuclear complexes [CH2(C5H4)2][M(CO)2][M′(CO)2] ( 11–13 ) and [CH2(C5H4)2]-[Ir(CO)2][C5H5TiCl2] ( 17 ) are obtained. Photolysis of 11 and 12 leads almost quantitatively to the formation of the CO-bridged compounds [CH2(C5H4)2][M(CO)(μ-CO)M′(CO)] ( 14, 15 ). According to an X-ray crystal structure analysis the Co/Rh complex 14 is isostructural to [CH2(C5H4)2][Rh2(CO)2(μ-CO)] ( 16 ).  相似文献   

2.
The dinuclear cobalt complex [CH2(C5H4)2][Co(PMe3)2]2 (2), which is prepared from CoCl(PMe3)3 and [CH2(C5H4)2]Li2, reacts with NH4PF6 and CH3I to form the protonated and methylated dications {[CH2(C5H4)2][CoR(PMe3)2]2}2+ (R = H, CH3). Treatment of {[CH2(C5H4)2][CoCH3(PMe3)2]2}I2 (4) with LiCH3 affords the neutral compound [CH2(C5H4)2][Co(CH3)2(PMe3)]2 (5). Ligand substitution of [CH2(C5H4)2][Co(CO)2]2 (6) with P2Me4 and 1,2-C2H4(PMe2)2(dmpe) gives the doubly-bridged complexes [CH2(C5H4)2][Co2(CO)2(μ-P2Me4)] (7) and [CH2(C5H4)2][Co2(CO)2(μ-dmpe)] (8), respectively. Similarly, [CH2(C5H4)2][Co-(CO)(PMe3)]2 (9) is obtained from the reaction of 6 with PMe3. Oxidation of 6 with iodine gives [CH2(C5H4)2][Co(CO)I2]2 (11) which is transformed via {[CH2(C5H4)2][Co(PMe2H)3]2}I4 (12) into the triply-bridged cobalt(II) complex [CH2(C5H4)2][CO2(μ-PMe2)2] (13).  相似文献   

3.
Li2[(C5Me4)2CH2] (III), the dilithium salt of the novel permethylated ring-connected [(C5Me4)2CH2]2− dianion, has been prepared from C5Me4H2 (I) via (C5Me4H)2CH2 (II) and subsequent reaction with n-BuLi. III reacts with [Rh(C2H4)(PMe3)Cl]2 to give the dinuclear complex [(C5Me4)2CH2][Rh(C2H4)PMe3]2 (IV) from which on methylation the compounds {[(C5Me4)2CH2][RhCH3(C2H4)PMe3]2} (PF6)2 (V) and [(C5Me4)2CH2][RhCH3(PMe3)I]2 (VI) are obtained. Treatment of IV with excess trifluoroacetic acid leads to the formation of [(C5Me4)2CH2](Rh(PMe3)(OCOCF3)2]2 (VII) which reacts with chelating diphosphines in the presence of NH4PF6 to give the PF6 salts of the doubly-bridged dications {[(C5Me4)2CH2][Rh2(PMe3)2(OCOCF3)2(μ-P-P)]}2+ (PP = dppm, dppe, dppb) (IX–XI). The reaction of III with [Rh(CO)2Cl]2 produces a mixture of the dinuclear complexes [(C5Me4)2CH2][Rh(CO)2]2 (XII) and [(C5Me4)2CH2][Rh2(μ-CO)2] (XIII) which are easily interconverted under mild conditions.  相似文献   

4.
Basic metals. XXIV. Mono- and dinuclear cobaltthiolato complexes obtained from disulfides. Splitting of a S? S bond by a metal base The dinuclear complex C5H5(PMe3)Co(μ-CO)2Mn(CO)C5H4Me ( 3 ) reacts with the disulfides S2R2 (R ? Ph, CH2Ph) by splitting of the sulfur-sulfur bond to form C5H5(PMe3)Co(SR)2 ( 4, 5 ). From 3 and S2Me2 a mixture of C5H5(PMe3)Co(SMe)2 ( 6 ) and [C5H5Co(μ-SMe)]2 ( 7 ) is obtained. The synthesis of C5H5(PMe3)Co(SCF3)2 ( 8 ) succeeds by treating 3 with N(SCF3)3. Whereas the reactions of 4 and 5 with MeI lead to the complex C5H5(PMe3)CoI2 ( 9 ), the dinuclear complex [C5H5(PMe3)Co(μ-SPh)]2(BF4)2 ( 11 ) is formed from 4 and [OMe3]BF4. The reactions of 11 with L = PMe3 and P(OMe)3 produce the compounds [C5H5Co(PMe3)(L)SPh]BF4 ( 12, 13 ), which react with [OMe3]BF4 to yield [C5H5Co(PMe3)(L)(MeSPh)](BF4)2 ( 14, 15 ).  相似文献   

5.
Basic Metals. LXIV. Lewis-basic Bis(trimethylphosphine)cobalt Complexes with Indenyl and Trifluormethylcyclopentadienyl as Ligands The half-sandwich type compounds C9H7Co(PMe3)2 ( 1 ) and (C5H4CF3)Co(PMe3)2 ( 6 ) are prepared from CoCl(PMe3)3 and C9H7Li or TlC5H4CF3, respectively. They behave like metal bases and react with HBF4, CH3I (or CF3SO3CH3), I2, and CH3COCl by oxidative addition to give the cationic complexes [C9H7CoX(PMe3)2]+ and [(C5H4CF3)CoX(PMe3)2]+ (X ? H, CH3, I, COCH3) which are isolated as the PF6 salts ( 2–5 and 7–10 ). The 1HNMR and the IR spectra of the compounds 1–10 are discussed, also in comparison to those of the corresponding cyclopentadienylcobalt complexes.  相似文献   

6.
The cyclopentadienylcobalt(I) compounds C5H5Co(PMe3)P(OR)3 (R = Me, Et, Pri) and C5H5Co(C2H4)L (L = PMe3, P(OMe)3, CO) are prepared by ligand substitution starting from C5H5Co(PMe3)2 and C5H5Co(C2H4)2. Whereas the reaction of C5H5Co(PMe3)P(OMe)3 with CH2Br2 mainly gives [C5H5CoBr(PMe3)P(OMe)3]Br, the dihalogenocobalt(III) complexes C5H5CoX2(PMe3) (X = Br, I) are obtained from C5H5Co(CO)PMe3 and CH2X2. Treatment of C5H5Co(CO)PMe3 or C5H5Co(C2H4)PMe3 with CH2ClI at low temperatures produces a mixture of C5H5CoCH2Cl(PMe3)I and C5H5CoCl(PMe3)I, which can be separated due to their different solubilities. The same reaction in the presence of ligand L gives the carbenoidcobalt(III) compounds [C5H5CoCH2Cl(PMe3)L]PF6 in nearly quantitative yields. If NEt3 is used as the Lewis base, the ylide complexes [C5H5Co(CH2PMe3)(PMe3)X]PF6 (X = Br, I) are obtained. The PF6 salts of the dications [C5H5Co(CH2PMe3)(PMe3)L]2+ (L = PMe3, P(OMe)3, CNMe) and [C5H5Co(CH2PMe3)(P(OMe)3)2]2+ are prepared either from [C5H5Co(CH2PMe3)(PMe3)X]+ and L, or more directly from C5H5Co(CO)PMe3, CH2X2 and PMe3 or P(OMe)3, respectively. The synthesis of C5H5CoCH2OMe(PMe3)I is also described.  相似文献   

7.
Reduction of the R2P-functionalized zirconocene dichlorides [C5Me4(CH2)2PR2] (C5Me5)ZrCl2 (R = Me (1) and Ph (2)) and [C5Me4(CH2)2PMe2][C5Me4(CH2)2PR2]ZrCl2 (R = Me (3) and Ph (4)) with amalgamated magnesium was studied. In the reduction of compounds 1 and 2, intramolecular C-H activation highly selectively afforded the fulvene hydride complexes Zr(H)(η5−C5Me5)[η52(C,P)−(CH2)C5Me3CH2CH2PR2] (R = Me (7), Ph (8)); in the case of compound 2, the aryl hydride Zr(H)(η5:C5Me5)[η51(C)−C5Me4CH2CH2PPh(o−C6H4)] (9) was also formed. The reduction of complexes 3 and 4 gave the ZrII derivatives Zr[η51(P)− C5Me4CH2CH2PMe2]2 (12) and Zr[η51(P)−C5Me4CH2CH2PMe2][η51(P)−C5Me4CH2 CH2PPh2] (14) stabilized by two phosphine groups. The second product in the reduction of compound 4 was the fulvene hydride complex Zr(H)(η5−C5Me4CH2CH2PPh2)[η52(C,P)−(CH2)C5Me3CH2CH2PMe2] (15). The reaction of compound 7 with an excess of MeI resulted selectively in replacement of the hydride ligand by iodide to give the complex ZrI(η5−C5Me5)[η52(C,P)−(CH2)C5Me3CH2CH2PMe2] (10). In contrast, in the reaction of compound 7 with Me2Si(H)Cl, the Zr-CH2 bond underwent cleavage to give the chloride hydride complex Zr(H)Cl(η5−C5Me5)[η51(P)−C5Me3(CH2SiMe2H)CH2CH2PMe2] (11). In the reaction of complex 12 with CO, a phosphine group was replaced by CO to form the complex Zr(CO)(η5−C5Me4CH2CH2PMe2)[η51(P)−C5Me4CH2CH2PMe2] (13). The results obtained were compared with analogous reduction reactions of MeO-, MeS-, and Me2N-functionalized zirconocene dichlorides. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 65–74, January, 2008.  相似文献   

8.
The reaction of the dilithium salt Li2[Me2Si(C5H4)(C5Me4)] (2) of Me2Si(C5H5)(C5HMe4) (1) with [MCl(C8H12)]2 (M=Rh, Ir) and [RhCl(CO)2]2 afforded homodinuclear metal complexes [{Me2Si(η5-C5H4)(η5-C5Me4)}{M(C8H12)}2] (M=Rh: 3; M=Ir: 4) and [{Me2Si(η5-C5H4)(η5-C5Me4)}Rh2(CO)2(μ-CO)] (5), respectively. The reaction of 2 with RhCl(CO)(PPh3)2 afforded a mononuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}Rh(CO)PPh3] (6) leaving the C5HMe4 moiety intact. Taking advantage of the difference in reactivity of the two cyclopentadienyl moieties of 2, heterodinuclear complexes were prepared in one pot. Thus, the reaction of 2 with RhCl(CO)(PPh3)2, followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded a homodinuclear metal complex [Rh(CO)PPh3{(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (7) consisting of two rhodium centers with different ligands and a heterodinuclear metal complex [Rh(CO)(PPh3){(η5-C5H4)SiMe25-C5Me4)}Ir(C8H12)] (8). The successive treatment of 2 with [IrCl(C8H12)]2 and [RhCl(C8H12)]2 provided heterodinuclear metal complex [Ir(C8H12){(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (9). The reaction of 2 with CoCl(PPh3)3 and then with PhCCPh gave a mononuclear cobaltacyclopentadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(CPhCPhCPhCPh)(PPh3)] (10). However, successive treatment of 2 with CoCl(PPh3)3, PhCCPh and [MCl(C8H12)]2 in this order afforded heterodinuclear metal complexes [M(C8H12){(η5-C5H4)SiMe25-C5Me4)}Co(η4-C4Ph4)] (M=Rh: 11; M=Ir: 12) in which the cobalt center was connected to the C5Me4 moiety. Although the heating of 10 afforded a tetraphenylcyclobutadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(η4-C4Ph4)] (13), in which the cobalt center was connected to the C5H4 moiety, simple heating of the reaction mixture of 2, CoCl(PPh3)3 and PhCCPh resulted in the formation of a tetraphenylcyclobutadiene complex [{Me2Si(C5H5)(η5-C5Me4)}Co(η4-C4Ph4)] (14), in which the cobalt center was connected to the C5Me4 moiety. The mechanism of the cobalt transfer was suggested based on the electrophilicity of the formal trivalent cobaltacyclopentadiene moiety. In the presence of 1,5-cyclooctadiene, the reaction of 2 with CoCl(PPh3)3 provided a mononuclear cobalt cyclooctadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(C8H12)] (15). The reaction of 15 with n-BuLi followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded the heterodinuclear metal complexes of [Co(C8H12){(η5-C5H4)SiMe25-C5Me4)}M(C8H12)] (M=Rh: 16; M=Ir: 17). Treatment of 6 with Fe2(CO)9 at room temperature afforded a heterodinuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}{Rh(PPh3)(μ-CO)2Fe(CO)3}] (18) in which the C5HMe4 moiety was kept intact. Treatment of dinuclear metal complex 5 with Fe2(CO)9 afforded a heterotrinuclear metal complex [{(η5-C5H4)SiMe25-C5Me4)}{Rh(CO)Rh(μ-CO)2Fe(CO)3}] (19) having a triangular metal framework. The crystal and molecular structures of 3, 11, 12, 18 and 19 have been determined by single-crystal X-ray diffraction analysis.  相似文献   

9.
Reaction of the η2(C,S)-coordinated thioketene cobalt complex [Co(C11H18S)-(PMe3(C5H5)] (2a) with the electrophils [Mn(CO)2(THF)(C5H5] and [Cr(CO)5(THF)] gives the dinuclear thioketene complexes (4) with two different metal atoms in the molecule. The structure of the cobalt manganese compound was determined by X-ray diffraction. Protonation of the mononuclear thioketene complexes 2 give novel cationic η2-bonded thioacyl compounds [Co(η2-RCS)-(PMe3(C5H5)]+ (9), as confirmed by X-ray analysis.  相似文献   

10.
The preparation of (borinato)(cyclobutadiene)cobalt complexes from the reactions of Co(C5H5BR)(1,5-C8H12) with acetylenes C2R′2 and of [C4(CH3)4]Co(CO)2I with Tl(C5H5BR) (R,R′ = CH3, C6H5) is described.In electrophilic substitution reactions Co(C5H5BCH3)[C4(CH3)4] (IVa) is more reactive than ferrocene. CF3CO2D effects H/D-exchange in the α-position of the borabenzene ring within a few minutes at ambient temperature and in the γ-position within less than four hours Friedel-Crafts acetylation with CH3COCl/AsCl3 in CH2Cl2 affords the 2-acetyl and the 2,6-diacetyl derivative of IVa. With the more active catalyst AlCl3, ring-member substitution is effected to give cations [Co(arene)C4(CH3)4]+ (arene = C6H5CH3, 2-CH3C6H4COCH3). Vilsmeier formylation gives the 2-formyl derivative of IVa. The acyl derivatives Co(2-R1CO-6-R2C5H3BCH3)[C4(CH3)4] (R1 = CH3, R2 = H, CH3CO and R1 = R2 = H) transform to the corresponding cations [Co(ortho-R1R2C6H4)C4(CH3)4]+ in superacidic media. The mechanistic relationship between acylation and ring-member substitution is discussed in detail.  相似文献   

11.
The novel hydridocobalt(III) complex [mer-Co(H)(SPh)2(PMe3)3] (1) was prepared by reaction of thiophenol with [Co(PMe3)3Cl], [Co(PMe3)4] and [Co(PMe3)4Me]. A dinuclear cobalt dithiophenolato complex [Co(PMe3)2(SPh)]2 (2) was obtained from the reaction of thiophenol with [Co(PMe3)4Me]. Reaction of 1 with iodomethane afforded complex [Co(PMe3)3(I)2] (3). Reaction of complex 2 with carbon monoxide gave a mononuclear dicarbonyl cobalt(I) complex [Co(PMe3)3(CO)2(SPh)] (4). The crystal structures of 1-4 were determined by X-ray diffraction. Formation mechanism of 1 is discussed.  相似文献   

12.
Treatment of [C5Me5(CO)3Fe]BF4 (I) with the phosphines Me3P and Et3P under thermal or photochemical conditions yields the novel iron salts [C5Me5-(CO)2(R3P)Fe]BF4 (R = Me (IIa), R = Et (IIb)) and [C5Me5(CO)(Me3P)2Fe]BF4 (IIc). The reaction of I and IIa with two mol of the ylide Me3PCH2 leads to the formation of the ironacyl-ylides C5Me5(CO)(L)FeC(O)CHPMe3 (L = CO (IVa), Me3P (IVb)). IVa selectively reacts at the “ylidic” carbon with the electrophilic reagents MeI, MeOSO2F, Me3SiOSO2CF3 to give the ironacyl-phosphonium salts [C5Me5(CO)2FeC(O)CH(R)PMe3] X (VaVc), while IVb is partially converted to [C5Me5(CO)2FeC(O)CH2PMe3]BF4 (IIIa) is obtained together with [C5Me5-(CO)2Fe]2 from I and IVa.  相似文献   

13.
Alternative Ligands. XXXV. Syntheses of Bidentate P‐Donor/Sn‐Acceptor Ligands: Coordination Experiments with Cp*Rh(CO)2 and CpRh(C2H4)2 Donor/acceptor ligands Me2Sn(CH2CH2PMe2)2 ( 1 ) and Me2Sn(OCH2PMe2)2 ( 2 ) have been prepared by radical reaction of Me2PVi with Me2SnH2 and by substitution of chlorine in Me2SnCl2 or of ethoxy groups in Me2Sn(OEt)2 by MOCH2PMe2 (M = Li, Na) and HOCH2PMe2, respectively. 2 cannot be isolated in pure form from the product mixture because, due to condensation reactions, the “ladder structure” [Me2Sn(OCH2PMe2)2OSnMe2]2 ( 3 ) is formed. The molecular structure of 3 was determined by X‐ray diffraction studies of single crystals. Attempts to produce the thiophosphoryl derivative of 3 result in the degradation of the ladder structure giving the thermally labile phosphane sulfide Me2Sn(OCH2P(S)Me2)2. Ligands 1 and 2 besides Me2PCH2CH2SnMe3 ( 4 ) have been used for the preparation of rhodium(I) complexes from Cp*Rh(CO)2 ( 5 ) or CpRh(C2H4)2 ( 10 ) as educts. The thermal reaction of 5 with 4 yields Cp*Rh(CO)PMe2CH2CH2SnMe3 ( 6 ), that of 5 with 1 a mixture of the mononuclear derivative Cp*Rh(CO) · PMe2CH2CH2SnMe2CH2CH2PMe2 ( 7 ) and the binuclear complex [Cp*Rh(CO)PMe2CH2CH2]2SnMe2 ( 8 ). The related system [Cp*Rh(CO)PMe2CH2O]2SnMe2 produced by reaction of 5 with 2 can only be detected in solution but, because of some side‐products, was not fully characterized. From 10 and 4 a mixture of mono‐ and disubstituted products, CpRh(C2H4)PMe2CH2CH2SnMe3 ( 11 ) and CpRh(PMe2CH2CH2SnMe3)2 ( 12 ), is obtained. Reaction of 1 with 10 yields a mixture of the complexes CpRh(C2H4)PMe2CH2CH2SnMe2CH2CH2PMe2 ( 13 ) and CpRh(Me2CH2CH2)2SnMe2 ( 14 ). Some of the NMR data (13C, δδSn) of 14 can be interpreted in terms of the expected Rh → Sn interaction. A definite proof by X‐ray diffraction on single crystals, so far, was not possible.  相似文献   

14.
Tetrylidynes [TbbSn≡Co(PMe3)3] ( 1 a ) and [TbbPb≡Co(PMe3)3] ( 2 ) (Tbb=2,6-[CH(SiMe3)2]2-4-(t-Bu)C6H2) are accessed for the first time via a substitution reaction between [Na(OEt2)][Co(PMe3)4] and [Li(thf)2][TbbEBr2] (E=Sn, Pb). Following an alternative procedure the stannylidyne [Ar*Sn≡Co(PMe3)3] ( 1 b ) was synthesized by hydrogen atom abstraction using AIBN from the paramagnetic hydride complex [Ar*SnH=Co(PMe3)3] ( 4 ) (AIBN=azobis(isobutyronitrile)). The stannylidyne 1 a adds two equivalents of water to yield the dihydroxide [TbbSn(OH)2CoH2(PMe3)3] ( 5 ). In reaction of the stannylidyne 1 a with CO2 a product of a redox reaction [TbbSn(CO3)Co(CO)(PMe3)3] ( 6 ) was isolated. Protonation of the tetrylidynes occurs at the cobalt atom to give the metalla-stanna vinyl cation [TbbSn=CoH(PMe3)3][BArF4] ( 7 a ) [ArF=C6H3-3,5-(CF3)2]. The analogous germanium and tin cations [Ar*E=CoH(PMe3)3][BArF4] (E=Ge 9 , Sn 7 b ) (Ar*=C6H3(2,6-Trip)2, Trip=2,4,6-C6H2iPr3) were also obtained by oxidation of the paramagnetic complexes [Ar*EH=Co(PMe3)3] (E=Ge 3 , Sn 4 ), which were synthesized by substitution of a PMe3 ligand of [Co(PMe3)4] by a hydridoylene (Ar*EH) unit.  相似文献   

15.
The complex [C5H5RhH(C2H4)PMe3]BF4 (I) reacts with NaF and NaCN by deprotonation to give C5H5Rh(PMe3)C2H4 but with NaCl, NaBr and NaI the ethylrhodium compounds C5H5RhC2H5(PMe3)X (II–IV) are obtained. The reactions of I with CO and PPri3 yield the BF4 salts of the cations [C5H5RhH(CO)PMe3]+ and [C5H5RhH(PPri3)PMe3]+ (V, VI), respectively, from which the uncharged complexes C5H5Rh(CO)PMe3 (VII) and C5H5Rh(PPRi3)PMe3 (VIII) are prepared. The carbonyl compound VII is also accessible either from C5H5Rh(CO)2 and PMe3 or from C5H5Rh(PMe3)2 and CO. The reaction of I with ethylene leads to the BF4 salt of the cation [C5H5RhC2H5(PMe3)C2H4]+ (X) which on treatment with PMe3 forms the complex [C5H5RhC2H5(PMe3)C2H4PMe3]BF4 (XI). The compound [C5H5RhH(C2H4)PPri3]BF4 (XII) reacts with NaI by insertion to yield C5H5RhC2H5(PPri3)I (XIII) whereas with PPri3 the salt [C5H5RhH(PPri3)2]BF4 (XIV) is produced. The bis(triisopropylphosphine) complex C5H5Rh(PPri3)2 (XVI) is obtained from XIV and NaH.  相似文献   

16.
Treatment of [C6Me6RuCl2]2 with carbon monoxide gives C6Me6Ru(CO)Cl2 (II) which reacts with PMe3 in the presence of NH4PF6 to form [C6Me6Ru(CO)(PMe3)Cl]PF6 (III). Reduction of the cation of III with NaC10H8 in THF yields C6Me6Ru(CO)PMe3 (IV) which is the first stable mononuclear areneruthenium(0) carbonyl complex. IV reacts with CF3COOH/NH4PF6 and MeI/NH4PF6 to give the stable salts [C6Me6RuH(CO)PMe3]PF4 (V) and [C6Me6RuCH3(CO)PMe3]PF6 (VI).  相似文献   

17.
C5H5Co(PMe3)CS2 (IV) is formed in practically quantitative yield in the reaction of C5H5Co(PMe3)2 (I) or the heterobinuclear complex C5H5(PMe3)Co(CO)2Mn(CO)C5H4Me (III) with CS2. The crystal structure shows that the carbon disulfide bonds as a dihapto ligand through the carbon and one sulfur atom (S(2)) (CoC = 1.89, CoS(2) = 2.24 Å, S(2)CS(1) = 141.2°). The two CS bond lengths in IV (CS(2) = 1.68, CS(1) =1.60 Å) are greater than in free CS2 (1.554Å) which is in agreement with the strong π-acceptor character of h2-CS2 as shown in the spectroscopic data. IV reacts with Cr(CO)5THF and C5H5Mn(CO)2THF to give the complexes C5H5(PMe3)Co(SCS)Cr(CO)5 (V) and C5H5(PMe3)Co(SCS)Mn(CO)2C5H5 (VI) respectively, in which the sulfur atom S(1) that is not bound to cobalt coordinates to the 16-electron fragments Cr(CO)5 and Mn(CO)2C5H5. The spectroscopic data of IV, V and VI are discussed.  相似文献   

18.
Co(CH3)(PMe3)4 forms 100 % regioselectively with (2‐(2‐diphenylphosphanyl)phenyl)‐1,3‐dioxalane and 2‐diphenylphosphanyl‐pyridine, by elimination of methane, the four‐membered metallacycles Co{(C3O2HC6H3)P(C6H5)2}(PMe3)3 ( 1 ) and Co{(CNC4H3)P(C6H5)2}(PMe3)3 ( 4 ). The regioselectivity is independent of the steric requirement of the ortho substituent in the 2‐diphenylphosphanylaryl‐ligands. Oxidative addition with iodomethane transforms 1 and 4 into octahedral, diamagnetic low‐spin d6 complexes Co(CH3)I‐{(C3O2HC6H3)P(C6H5)2}(PMe3)2 ( 2 ) and Co(CH3)I‐{(CNC4H3)P(C6H5)2}(PMe3)2 ( 5 ). Under an atmosphere of carbon monoxide, insertion into the Co‐C bond results in ring expansion by forming the new assembled phosphanylbenzoyl complexes Co{(C4O3HC6H3)‐P(C6H5)2}CO(PMe3)2 ( 3 ) and Co{(OCNC4H3)P(C6H5)2}CO(PMe3)2 ( 6 ). The three different types of cobaltacycles are supported by X‐ray diffraction of 1 , 3 , 5 and 6 .  相似文献   

19.
A new metal-metal bonded binuclear iron system [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2]2 (2) has been prepared by treating two equivalents of NaCp with one equivalent of ClSi(Me)2CH2CH2SiClMe2 obtaining the intermediate (C5H5)Si(Me)2CH2CH2Si(Me)2(C5H5) which then is directly allowed to react with Fe(CO)5 given 2 in 30% yield. From this cyclopentadienyldisilyl linked system three new binuclear irom complexes are formed. Treatment of 2 with Na/Hg in THF produced the dianion [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2?]2 which is quenched with CH3I giving [Me2SiCH2CH2SiMe2][η5-C4H4Fe(CO)2CH3]2 (4) in 76% yield. Complex 2 is oxidized with 1.2 equivalent of I2 to give [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2I]2 (5) in 85% yield. Photolysis of 5 (1 equiv.) and PPh3 (3 equiv.) results in the formation of the bis-substituted compound [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)(PPh3)I]2 (6). These four new binuclear iron complexes are characterized by 1H, 13C, and 31P NMR and IR spectroscopy.  相似文献   

20.
The reaction of C5H5Rh(CO)(PiPr3) (1] which is prepared from C5H5Rh(CO)2 and neat P1Pr3, with the nitriloxides 2-RC6H4CNO (R = H, Cl) leads to the formation of the metallaheterocycles C5H5(P1Pr3) ) (2, 3) in 90–95% yield. Compound 1 reacts with tosylazide to give the C,N-bound isocyanate complex C5 H5(PiPr3)Rh(η2-TosN=C=O) (6). Analogously, on treatment of C5Me5Co(CO)(PMe3) with phenylazide the phenylisocyanate derivative C5Me5(PMe3)Co(η2-PhN=C=O) (7) is formed. Protonation of 7 with CF3CO 2H affords the non-ionic carbamoylcobalt complex C5Me5(PMe3)Co[C(O)NHPh](O2CCF3) (8). The X-ray structural analysis of 2 reveals the presence of an almost planar heterocycle in which the two Rh-C distances differ by 0.045 Å  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号