首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
New polyfluorinated 1,3-diketones have been prepared from polyfluorinated acetophenones and appropriate esters in the presence of sodamide. The corresponding copper 1,3-diketonates have been obtained by treating a methanolic solution of polyfluorinated 1,3-diketone with methanolic solution of copper acetate. The polyfluorinated 1,3-diketones have been characterized by elemental as well as by spectral studies, viz: I.R., 1H N.M.R. and 19F N.M.R. In I.R., characteristic absorptions observed are: CF stretching bands (1300 ? 1000) cm?1, CF deformation modes (900 ? 700 cm?1) and intramolecular hydrogen bonding (3000 ? 2500 cm?1). In 1H N.M.R. methine ( = CH) signal is observed at δ 6.2 ? 6.8 ppm and enolic proton resonance signal at δ 13 ? 15 ppm indicating the presence of strong hydrogen bonding in such polyfluorinated 1,3-diketones.  相似文献   

2.
Spectroscopic evidence for C? H ??? O hydrogen bonding in chloroform ??? acetone [Cl3CH ??? O?C(CH3)2] mixtures was obtained from vibrational inelastic neutron scattering (INS) spectra. Comparison between the INS spectra of pure samples and their binary mixtures reveals the presence of new bands at about 82, 130 and 170 cm?1. Assignment of the 82 cm?1 band to the νO ??? H anti‐translational mode is considered and discussed. In addition, the βC? H mode of CHCl3 at 1242 cm?1 is split in the spectra of the mixtures, and the high‐wavenumber component is assigned to the hydrogen‐bonded complex. The plot of the integrated intensity of this component shows a maximum for x=0.5, in agreement with the 1:1 stoichiometry of the chloroform ??? acetone complex, with a calculated complexation constant of 0.15 dm3 mol?1. Results also show that the complex behaves as an independent entity, that is, despite being weak, such interactions play a key role in supramolecular chemistry.  相似文献   

3.
Mercury atoms, laser‐ablated from an amalgam dental filling target, react with cyanogen in excess argon during condensation at 4 K to form two major products in the 2200 cyanide M?C?N stretching region of the IR spectrum, which were assigned to NCHgCN and NCHgHgCN from their antisymmetric C?N stretching mode absorptions at 2213.8 and 2180.1 cm?1. Two broader bands in the isocyanide region at 2098.2 and 2089.6 cm?1 were assigned to CNHgNC and CNHgHgNC. The N‐bonded isomers were computed to be 603/33 and 823/69 times more intense IR absorbers than the C‐bonded isomers at the CCSD level of theory. The dissociation energy for the NCHg?HgCN molecule into two HgCN molecules was calculated to be 296 kJ mol?1 and that for CNHg?HgNC into two HgNC molecules is 304 kJ mol?1. These simple molecules with two cyanide or two isocyanide ligands have two of the shortest and strongest known Hg?Hg single bonds as the two electronegative CN ligands withdraw antibonding electron density from the bonding region.  相似文献   

4.
Mercury atoms, laser‐ablated from an amalgam dental filling target, react with cyanogen in excess argon during condensation at 4 K to form two major products in the 2200 cyanide M?C?N stretching region of the IR spectrum, which were assigned to NCHgCN and NCHgHgCN from their antisymmetric C?N stretching mode absorptions at 2213.8 and 2180.1 cm?1. Two broader bands in the isocyanide region at 2098.2 and 2089.6 cm?1 were assigned to CNHgNC and CNHgHgNC. The N‐bonded isomers were computed to be 603/33 and 823/69 times more intense IR absorbers than the C‐bonded isomers at the CCSD level of theory. The dissociation energy for the NCHg?HgCN molecule into two HgCN molecules was calculated to be 296 kJ mol?1 and that for CNHg?HgNC into two HgNC molecules is 304 kJ mol?1. These simple molecules with two cyanide or two isocyanide ligands have two of the shortest and strongest known Hg?Hg single bonds as the two electronegative CN ligands withdraw antibonding electron density from the bonding region.  相似文献   

5.
Frying oils were studied by Fourier-transform infrared (FT-IR) spectroscopy, in the range 4,000–200 cm?1, at different temperatures, in the liquid and solid states. The infrared spectrum at 15 °C was similar to that at 200 °C. The band at 730 cm?1 which was assigned to the rocking mode of (–CH2) disappeared at higher temperature because of the rotational isomerism which occurred in the oil structure. The activation energy (E a) of the disappearing (–CH2) band, calculated by use of the chemical dynamic method using the Arrhenius equation, is 8.45 kJ mol?1. The enthalpy difference (ΔH) between the two rotational isomer bands of the conformational structures of the oil at 730 and 1,790 cm?1, at different high temperatures, was also calculated, by use of the Van’t Hoff equation; the value obtained was ?10.85 kJ mol?1.  相似文献   

6.
The C?H???Y (Y=hydrogen‐bond acceptor) interactions are somewhat unconventional in the context of hydrogen‐bonding interactions. Typical C?H stretching frequency shifts in the hydrogen‐bond donor C?H group are not only small, that is, of the order of a few tens of cm?1, but also bidirectional, that is, they can be red or blue shifted depending on the hydrogen‐bond acceptor. In this work we examine the C?H???N interaction in complexes of 7‐azaindole with CHCl3 and CHF3 that are prepared in the gas phase through supersonic jet expansion using the fluorescence depletion by infra‐red (FDIR) method. Although the hydrogen‐bond acceptor, 7‐azaindole, has multiple sites of interaction, it is found that the C?H???N hydrogen‐bonding interaction prevails over the others. The electronic excitation spectra suggest that both complexes are more stabilized in the S1 state than in the S0 state. The C?H stretching frequency is found to be red shifted by 82 cm?1 in the CHCl3 complex, which is the largest redshift reported so far in gas‐phase investigations of 1:1 haloform complexes with various substrates. In the CHF3 complex the observed C?H frequency is blue shifted by 4 cm?1. This is at variance with the frequency shifts that are predicted using several computational methods; these predict at best a redshift of 8.5 cm?1. This discrepancy is analogous to that reported for the pyridine‐CHF3 complex [W. A. Herrebout, S. M. Melikova, S. N. Delanoye, K. S. Rutkowski, D. N. Shchepkin, B. J. van der Veken, J. Phys. Chem. A­ 2005 , 109, 3038], in which the blueshift is termed a pseudo blueshift and is shown to be due to the shifting of levels caused by Fermi resonance between the overtones of the C?H bending and stretching modes. The dissociation energies, (D0), of the CHCl3 and CHF3 complexes are computed (MP2/aug‐cc‐pVDZ level) as 6.46 and 5.06 kcal mol?1, respectively.  相似文献   

7.
Adsorption of carbon dioxide on H‐ZSM‐5 zeolite (Si:Al=11.5:1) was studied by means of variable‐temperature FT‐IR spectroscopy, in the temperature range of 310–365 K. The adsorbed CO2 molecules interact with the zeolite Brønsted‐acid OH groups bringing about a characteristic red‐shift of the O? H stretching band from 3610 cm?1 to 3480 cm?1. Simultaneously, the ν3 mode of adsorbed CO2 is observed at 2345 cm?1. From the variation of integrated intensity of the IR absorption bands at both 3610 and 2345 cm?1, upon changing temperature (and CO2 equilibrium pressure), the standard adsorption enthalpy of CO2 on H‐ZSM‐5 is ΔH0=?31.2(±1) kJ mol?1 and the corresponding entropy change is ΔS0=?140(±10) J mol?1 K?1. These results are discussed in the context of available data for carbon dioxide adsorption on other protonic, and also alkali‐metal exchanged, zeolites.  相似文献   

8.
In the title compound [systematic name: 3‐(azaniumylcarbamoyl)pyridinium dichloride], C6H9N3O2+·2Cl, the ions are connected by N—H...Cl hydrogen bonds to form layers and C—H...Cl interactions expand the layers into a three‐dimensional net. The energies of the N—H...Cl interactions range from typical for very weak interactions (0.17 kcal mol−1) to those observed for relatively strong interactions (29.1 kcal mol−1). C—H...Cl interactions can be classified as weak and mildly strong (energies ranging from 2.2 to 8.2 kcal mol−1). Despite the short contacts existing between the parallel aromatic rings of the cations, π–π interactions do not occur.  相似文献   

9.
IR data of eight substituted flavanones and their isomeric hydroxychalkones have been recorded in order to assign the various absorption bands and to study the effect of substituents on C=C out-of-plane deformation (400–700 cm?1), C?H out-of-plane deformation (700–1000 cm?1), C?H in-plane deformation (1000–1300 cm?1), C?O stretch (≈1200 cm?1), OCH3 (1200–1300 cm?1), O?H deformation (1300–1400 cm?1), CH3 deformation (1300–1500 cm?1), benzene ring vibration (1400–1600 cm?1) and C=O stretch (≈1650 cm?1). The δC?H (ring A) in 2′,4′-dihydroxy-3-nitrochalkone appears at 826 cm?1 (s), while in the isomeric flavanone it shows up as three bands, viz., 807 (w), 833 (m) and 881 cm?1 (w). This difference principally arises due to the presence of the electron withdrawing nitro substituent. The C=O stretching vibration in flavanones appears at a higher frequency than in the corresponding hydroxychalkones. This is perhaps due to the lack of conjugation in the former class of compounds. Chloro substituents (ring B) in different positions exert differing effects on νC?O. These differences can be rationalized in terms of a field-effect exerted by the chlorine atom.  相似文献   

10.
It was established that the cytosine·thymine (C·T) mismatched DNA base pair with cis‐oriented N1H glycosidic bonds has propeller‐like structure (|N3C4C4N3| = 38.4°), which is stabilized by three specific intermolecular interactions–two antiparallel N4H…O4 (5.19 kcal mol?1) and N3H…N3 (6.33 kcal mol?1) H‐bonds and a van der Waals (vdW) contact O2…O2 (0.32 kcal mol?1). The C·T base mispair is thermodynamically stable structure (ΔGint = ?1.54 kcal mol?1) and even slightly more stable than the A·T Watson–Crick DNA base pair (ΔGint = ?1.43 kcal mol?1) at the room temperature. It was shown that the C·T ? C*·T* tautomerization via the double proton transfer (DPT) is assisted by the O2…O2 vdW contact along the entire range of the intrinsic reaction coordinate (IRC). The positive value of the Grunenberg's compliance constants (31.186, 30.265, and 22.166 Å/mdyn for the C·T, C*·T*, and TSC·T ? C*·T*, respectively) proves that the O2…O2 vdW contact is a stabilizing interaction. Based on the sweeps of the H‐bond energies, it was found that the N4H…O4/O4H…N4, and N3H…N3 H‐bonds in the C·T and C*·T* base pairs are anticooperative and weaken each other, whereas the middle N3H…N3 H‐bond and the O2…O2 vdW contact are cooperative and mutually reinforce each other. It was found that the tautomerization of the C·T base mispair through the DPT is concerted and asynchronous reaction that proceeds via the TSC·T ? C*·T* stabilized by the loosened N4? H? O4 covalent bridge, N3H…N3 H‐bond (9.67 kcal mol?1) and O2…O2 vdW contact (0.41 kcal mol?1). The nine key points, describing the evolution of the C·T ? C*·T* tautomerization via the DPT, were detected and completely investigated along the IRC. The C*·T* mispair was revealed to be the dynamically unstable structure with a lifetime 2.13·× 10?13 s. In this case, as for the A·T Watson–Crick DNA base pair, activates the mechanism of the quantum protection of the C·T DNA base mispair from its spontaneous mutagenic tautomerization through the DPT. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The X‐ray structure of the title compound [Pd(Fmes)2(tmeda)] (Fmes=2,4,6‐tris(trifluoromethyl)phenyl; tmeda=N,N,N′,N′‐tetramethylethylenediamine) shows the existence of uncommon C? H???F? C hydrogen‐bond interactions between methyl groups of the TMEDA ligand and ortho‐CF3 groups of the Fmes ligand. The 19F NMR spectra in CD2Cl2 at very low temperature (157 K) detect restricted rotation for the two ortho‐CF3 groups involved in hydrogen bonding, which might suggest that the hydrogen bond is responsible for this hindrance to rotation. However, a theoretical study of the hydrogen‐bond energy shows that it is too weak (about 7 kJ mol?1) to account for the rotational barrier observed (ΔH=26.8 kJ mol?1), and it is the steric hindrance associated with the puckering of the TMEDA ligand that should be held responsible for most of the rotational barrier. At higher temperatures the rotation becomes fast, which requires that the hydrogen bond is continuously being split up and restored and exists only intermittently, following the pulse of the conformational changes of TMEDA.  相似文献   

12.
In the title compound, C10H7NO3·H2O, the zwitterionic organic molecules and the water molecules are connected by N—H...O and O—H...O hydrogen bonds to form ribbons, and π–π stacking interactions expand these ribbons into a three‐dimensional net. The energies of these hydrogen bonds adopt values typical for mildly weak interactions (3.33–7.75 kcal mol−1; 1 kcal mol−1 = 4.184 kJ mol−1). The total π–π stacking interactions between aromatic molecules can be classified as mildly strong (energies of 15.3 and 33.9 kcal mol−1), and they are made up of multiple constituent π–π interactions between six‐membered rings. The short intermolecular C—H...O contact between two zwitterionic molecules is nonbonding in character.  相似文献   

13.
Interaction between adsorbed hydrogen and the coordinatively unsaturated Mg2+ and Co2+ cationic centres in Mg‐MOF‐74 and Co‐MOF‐74, respectively, was studied by means of variable‐temperature infrared (VTIR) spectroscopy. Perturbation of the H2 molecule by the cationic adsorbing centre renders the H? H stretching mode IR‐active at 4088 and 4043 cm?1 for Mg‐MOF‐74 and Co‐MOF‐74, respectively. Simultaneous measurement of integrated IR absorbance and hydrogen equilibrium pressure for spectra taken over the temperature range of 79–95 K allowed standard adsorption enthalpy and entropy to be determined. Mg‐MOF‐74 showed ΔH0=?9.4 kJ mol?1 and ΔS0=?120 J mol?1 K?1, whereas for Co‐MOF‐74 the corresponding values of ΔH0=?11.2 kJ mol?1 and ΔS0=?130 J mol?1 K?1 were obtained. The observed positive correlation between standard adsorption enthalpy and entropy is discussed in the broader context of corresponding data for hydrogen adsorption on cation‐exchanged zeolites, with a focus on the resulting implications for hydrogen storage and delivering.  相似文献   

14.
Spectroscopic Properties of HCl Adducts of the Di(phthalocyaninato(2–))lanthanide Acids Thin films of bis(triphenylphosphine)iminiumdi(phthalocyaninato(2–))lanthanidates(III), (PNP)[Ln(Pc2)2] (Ln = La…(? Ce, Pm)…Lu) react with hydrogen chloride yielding the green acid adduct [HLn(Pc2?)2] · xHCl. The typical π–π* transitions of the Pc2? ligand are observed in the UV-VIS spectra (B: ~ 14500 cm?1; Q: ~ 30300 cm?1); these are broadened and shifted to lower energy with respect to those of the precursor. A N? H stretching vibration at ~ 3170 cm?1 as well as a H? N? C deformation vibration at ~ 1200 cm?1 in the MIR spectra are diagnostic for these HCl adducts.  相似文献   

15.
Abstract

A mesoporous covalent triazine framework, PCPDI, was synthesized via an aromatic nitrile trimerization reaction of N,N′-di(4-cyanphenyl)- 3,4,9,10-tetracarboxydiimide (CPDI) by CF3SO3H catalyzed at 40?°C and this method avoids the use of noble metal catalyzers or high temperature reaction. PCPDI exhibits high thermal stability and strong fluorescence. The PCPDI shows ultrahigh sensitivity to tracing o-nitrophenol in chloroform with KSV constant of 1.74?×?105 L mol?1 and detection limit (LOD) of 1.72?×?10?11?mol L?1.  相似文献   

16.
Carbon-13 and proton NMR data of macrocyclic diaromatic dilactones are presented. The observed behaviour of the spectra as a function of temperature shows that the energy barrier for the re-orientation of the side chains is lower than 49 kJ mol?1 (12 kcal mol?1) and that the energy barrier for the rotation of the aromatic rings is larger than 99 kJ mol?1 (24 kcal mol?1). Hence, chiral substituted dilactones of this type will be resolvable, and the enantiomers can be easily handled at room temperature.  相似文献   

17.
Density functional theory (DFT) calculations have been used to explore electron attachment to the purines adenine and guanine and their hydrogen atom loss. Calculations show that the dehydrogenation at the N9 site in the adenine and guanine transient anions is the lowest‐cost channel of hydrogen loss, and the N9? H bond scission has Gibbs free energies of dissociation ΔG° of 8.8 kcal mol?1 for the anionic adenine and 13.9 kcal mol?1 for the anionic guanine. The relatively high feasibility of low‐energy electron (LEE)‐induced N9? H bond cleavage in the purine nucleobases arises from high electron affinities of their H‐deleted counterparts. Unlike adenine, other N? H bond dissociations are competitive with the N9? H bond fission in the anionic guanine. The replacement of hydrogen in the ring of purine has a significant effect on the N9? H bond fragmentation. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

18.
Models of liquid ethylene glycol are built by means of molecular dynamics at temperatures ranging between 268 and 443 K, with 1000 molecules in rectangular parallelepiped basic cells. The dependences of structures of O-H…O hydrogen bonds on modeling time and temperature are analyzed. It is found that the hydrogen bonds emerge at different sites of a model, thus forming a hydrogen bonds network that is continuously rebuilt under the action of thermal fluctuations. The number of hydrogen bonds in the models is observed to decrease when the temperature is raised. The energy of hydrogen bond formation is found to be ?20.0 ± 2.6 kJ mol?1, the average bond lifetime is 370 ps at 268 K and 147 ps at 323 K, and the activation energy of hydrogen bond rupture at these temperatures is ~12.1 kJ mol?1. It is concluded that the data on the breaking of H-bonds at temperatures of 323 to 443 K can be explained by the molecules moving away from each other as a result of diffusive motion, accompanied by rearrangement of the hydrogen bonds network. The concentration of dimers in the models is shown to be rather low, while the average energy of forming a dimer from two ethylene glycol molecules is ?35.4 kJ mol?1.  相似文献   

19.
Single crystals of copper formate tetrahydrate were grown at room temperature. Spectra in the near infrared at room temperature and in the visible at room and liquid air temperatures were recorded on a Unicam SP-700 spectrophotometer and Hilger medium quartz spectrograph respectively. The observed absorption bands have been attributed to an ion of Cu2+ in tetragonal symmetry with 2B1g as the ground state. Taking into consideration the spin—orbit coupling associated with the tetragonal field, a successful interpretation of all the observed bands has been made. The band observed in the near infrared at 11000 cm?1 has been indentified with a vibrational overtone mode of CO2. The crystal parameters derived are Dq = ?1380 cm?1, Ds = ?1950 cm?1, Dt = ?205 cm?1 and λ = ?830 cm?1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号