首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
反应性单体改性PP/PS共混物结晶与熔融行为   总被引:2,自引:0,他引:2  
制备了三种反应性单体和两种PP接枝物改性的PP/PS共混物,用DSC研究了改性PP/PS共混物的结晶与熔融行为。结果表明:PS的加入提高了PP的结晶温度,两种接枝物的加入进一步提高共混物中PP的结晶温度,少量反应性单体对结晶温度影响不大,但高用量时则明显提高共混物的结晶温度;外加接枝物或者反应性单体对共混物中PP的熔融温度影响不大,但是熔融峰形与结晶温度高低有关。  相似文献   

2.
The compatibilization of incompatible polypropylene (PP)/poly(ethylene oxide) (PEO) blends was studied. The experimental results showed that the graft copolymer [(PP-MA)-g-PEO] of maleated PP(PP-MA) and mono-hydroxyl PEO (PEO-OH) was a good compatibilizer for the PP/PEO blends in which PP-MA also had some compatibilization. The crystallization of the blends was affected by the compatibility between PP and PEO. The interfacial behavior of the compatibilizers had an important effect on crystallization behavior of the PP/PEO blends. PEO showed fractionated crystallization in the PP/PEO blends. This behavior was studied from the view point of the theory of fractionated crystallization. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
This work dealt with the effect of using an acrylic acid modified polypropylene (PP‐g‐AA) as a compatibilizing agent for the intercalation/exfoliation of an organically modified montmorillonite (o‐MMT) in a polypropylene matrix (PP). Two PP‐g‐AA containing the same AA content (6 wt %) and having different molar masses were used. The o‐MMT content was 0, 1, or 5 wt % of total mass and the PP‐g‐AA/o‐MMT mass ratio was 0/1, 1/1, 2/1, or 5/1. Results of wide angle X‐ray scattering (WAXS) and transmission electronic microscopy (TEM) showed that without the PP‐g‐AA, the o‐MMT was dispersed in the PP/o‐MMT in a micrometer scale, similar to a conventional microcomposite. With the PP‐g‐AA, the o‐MMT was much better dispersed and its interlayers were intercalated and partly exfoliated by the polymer chains. Compared with the neat PP, some PP/PP‐g‐AA/o‐MMT systems exhibited higher G′ values and a yield stress at low frequencies, indicating that the PP‐g‐AA promoted the intercalation/exfoliation of the o‐MMT. The compatibilizing efficiency of those two PP‐g‐AA was very similar. Generally speaking, the higher the PP‐g‐AA/o‐MMT mass ratio, the better the state of dispersion and the degree of intercalation/exfoliation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1811–1819, 2008  相似文献   

4.
 The Vickers microhardness of blends of isotactic polypropylene and a semiflexible liquid-crystalline polymer (iPP/LCP 90/10 and 80/20 w/w), compatibilized with 2.5, 5 or 10 wt% PP-g-LCP copolymers with different composition has been studied. It has been shown that the microhardness values of uncompatibilized blends are close to the additive ones, while for compatibilized blends a strong positive deviation from additivity has been established. This result is interpreted by the increase in the degree of crystallinity of PP, by the decrease in the surface free energy of PP crystals and by the decrease in the surface free energy of the LC domains when the PP-g-LCP compatibilizer is present. The effect of the composition and concentration of the compatibilizer on the experimental hardness values has also been studied. The values of the microhardness/modulus of elasticity of some of the materials have been obtained. It is demonstrated that according to these values the compatibilized blends take a position closer to the elastic material in the elastic–plastic spectrum than the uncompatibilized blends. The results are interpreted by the compatibilizing efficiency of PP-g-LCP copolymers towards iPP/LCP blends. Received: 18 June 2001 Accepted: 4 October 2001  相似文献   

5.
The crystals of N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide (DC26NDCA) and N,N′-dicyclohexyl-1,4-naphthalenedicarboxamide (DC14NDCA) were selected as nucleating agents to induce the crystallization of isotactic polypropylene (i-PP). The influence of the crystal structures of the nucleating agents on the crystallization behaviors and morphologies was studied by means of differential scanning calorimeter, wide-angle X-ray diffraction, polarized light microscopy, and atomic force microscopy (AFM). The results show that DC26NDCA is a selective β-nucleating agent for the i-PP crystallization, while DC14NDCA only has a very weak α-nucleating effect for the i-PP crystallization. The dynamic growth processes reveal that i-PP crystals grow with different crystallization behaviors in the presence of the nucleating agents. The i-PP lamellar structures on the crystal surfaces of the nucleating agents were observed by AFM in details, which suggested that the nucleating agents induced the epitaxial growth of the i-PP lamellae.  相似文献   

6.
Compatibilized blends of thermoplastic polyurethane (TPU) and polypropylene (PP) were developed using amine (primary or secondary) functionalized PP's (PP-g-NH2 or PP-g-NHR). The strategy of reactive compatibilization is based on fast reactions between amine functional groups and urethane linkages or traces of free isocyanates released by thermal degradation of TPU. Excellent compatibilization between TPU and PP was confirmed by rheological, morphological, and mechanical properties. Much finer domain size, higher interfacial adhesion, and more stable morphologies were clearly observed by scanning electron microscopy. Significant improvements in the overall mechanical properties (tensile, tear, abrasion) imply significantly more reaction between TPU and PP phases in the two TPU/PP blends containing PP-g-NH2 or PP-g-NHR than a TPU/PP blend using PP-g-MA as a compatibilizing agent.  相似文献   

7.
The aim of this study was to investigate the effects of maleic anhydride-graft-polypropylene (MA-g-PP) as a compatibilizer and wood fiber as a lignocellulosic filler on technical properties of poly(l-lactic acid) (PLLA)/polypropylene composites. The obtained composites were characterized through mechanical tests, thermogravimetric analysis, differential scanning analyzer, and chemical analysis via Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The obtained results showed that the mechanical properties of the composites containing MA-g-PP were higher than those of the composites without MA-g-PP. SEM images revealed that the morphological properties of the composites including PP and PLLA were improved. The chemical interactions between PP and PLLA were demonstrated through FTIR results of composites with MA-g-PP.  相似文献   

8.
Wood flour/polypropylene composites (WPC) were prepared by melt extruding with different wood flour (WF) loadings. The non-isothermal crystallization and melting was studied with different WF loadings, for W40P60 and W40P60M6, the melting was investigated after non-isothermal and isothermal crystalline. Comparing with neat polypropylene, the melting behavior of the composites, both non-isothermally and isothermally, was investigated by differential scanning calorimetry (DSC). The results showed that WF was an effective heterogeneous nucleating agent, as evidenced by an increase in the crystallization temperature and the crystallinity for melt crystallization of PP with increasing WF content. For the non-isothermal samples, the origins of the double melting behaviors were discussed, based on the DSC results of PP. The XRD measurements confirmed that no crystalline transition existed during the non-isothermal crystallization process. With m-TMI-g-PP adding, due to compatibilization phenomenon were probably responsible for decreasing T m, X c. In the DSC scan after isothermal crystallization process, the single melting behaviors were found and each melting endotherm had a different origin.  相似文献   

9.
Thermal stability of ester-thermoplastic polyurethane (TPU)/polypropylene (PP) and ether-TPU/PP blends was evaluated by thermogravimetric studies. Thermal studies were made as a function of blend ratio. Effects of compatibilization using MA-g-PP and nanoclay addition on thermal stability were evaluated. Mass loss at 400 °C was found to decrease with increasing PP content were determined. Finally the compatibility and crystallization behavior of the blends were studied by differential scanning calorimetry. Compared to the ether-TPU blend nanocomposites, the ester-TPU blends showed better compatibility and thermal stability.  相似文献   

10.
Morphology development during isothermal crystallization in equal molecular weight isotactic polypropylene (iPP) and atactic polypropylene (aPP) blends was studied with time‐resolved simultaneous small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray scattering methods with synchrotron radiation. The final long period obtained after crystallization at 115 °C was nearly independent of blend composition up to 50 wt % aPP but showed an increase in the 80 wt % aPP blend. At a high crystallization temperature (137.5 °C), the increase in the final long period with aPP content was significant, and the evolution of iPP crystallinity was also affected. However, at low crystallization temperatures, the additive decrease of the crystallinity and the constant melting point with increasing aPP content suggest that the crystallizability and crystal morphology of iPP is not a strong function of aPP. The iPP/aPP blends showed a strong low‐angle SAXS upturn as a function of composition, which suggests the segregation of aPP on size scales larger than the lamellar spacing. A detailed analysis of the SAXS patterns indicates that aPP disrupts the ordering within the lamellar stacking. The results are generally consistent with predominantly interfibrillar incorporation of the aPP diluent within the microstructure, with only modest interlamellar incorporation dependent on the crystallization temperature. The findings can be attributed to the partial miscibility/mixing of the aPP and iPP components in the blend before crystallization, depending on the crystallization undercooling. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2580–2590, 2000  相似文献   

11.
In the present work, α‐form nucleating agent 1,3:2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988) is introduced into the blends of polypropylene/ethylene–octene copolymer (PP/POE) blends to study the effect of the nucleating agent on the toughness of PP/POE blends through affecting the crystallization behavior of PP matrix. Compared with the PP/POE blends, in which the toughness of the blends increases gradually with the increasing content of POE and only a weak transition in toughness is observed, addition of 0.2 wt % DMDBS induces not only the definitely brittle‐ductile transition at low POE content but also the enhancement of toughness and tensile strength of the blends simultaneously. Study on the morphologies of impact‐fractured surfaces suggests that the addition of a few amounts of DMDBS increases the degree of plastic deformation of sample during the fracture process. WAXD results suggest that POE induces the formation of the β‐form crystalline of PP; however, DMDBS prevents the formation of it. SEM results show that the addition of DMDBS does not affect the dispersion and phase morphologies of POE particles in PP matrix. DSC and POM results show that, although POE acts as a nucleating agent for PP crystallization and which enhances the crystallization temperature of PP and decreases the spherulites size of PP slightly, DMDBS induces the enhancement of the crystallization temperature of PP and the decrease of spherulites size of PP more greatly. It is concluded that the definitely brittle–ductile transition behavior during the impact process and the great improvement of toughness of the blends are attributed to the sharp decrease of PP spherulites size and their homogeneous distribution obtained by the addition of nucleating agent. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 577–588, 2008  相似文献   

12.
The macromorphology of isotactic/atactic (iPP/aPP) and isotactic/syndiotactic (iPP/sPP) polypropylene mixtures is examined by optical microscopy. The spherulitic macrostructure of equimolecular weight [weight‐average molecular weight (Mw) = 200k] iPP/aPP blends is volume‐filling to very high aPP concentrations when the crystallization temperature is 130 °C. Similar spherulitic macrostructures (spherulite size and volume‐filling nature) are observed for iPP homopolymer and a 50/50 iPP/aPP blend at low crystallization temperatures (115–135 °C). At higher crystallization temperatures (140–145 °C), a equimolecular weight (Mw = 200k) 50/50 iPP/aPP blend exhibits nodular texture that blurs the spherulitic boundaries. Double temperature jump experiments show that the nodular texture is due to melt phase separation that develops prior to crystallization. The upper critical solution temperature (UCST) of a 50/50 iPP/aPP blend (Mw = 200k) lies below 155 °C, and the blend is miscible at conventional melt processing temperatures. The UCST behavior is controlled by the blend molecular weight and aPP microstructure. aPP microstructures containing increased isospecific sequencing (although still noncrystalline) exhibit a reduced tendency for phase separation in 50/50 mixtures (Mw = 200k) and the absence of nodular texture at low undercoolings (140–145 °C). Equimolecular weight (Mw = 200k) 50/50 iPP/sPP mixtures exhibit phase‐separated texture at all crystallization temperatures. The size scale of the phase‐separated texture decreases with decreasing crystallization temperature because of a competition between crystallization and phase separation from a melt initially well mixed from the initial solution blending process. Extended melt annealing experiments show that the 50/50 iPP/sPP mixture (Mw = 200k) is immiscible in the melt at conventional melt processing temperatures. The iPP/sPP pair shows a much stronger tendency for phase separation than the iPP/aPP polymer pair. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1947–1964, 2000  相似文献   

13.
In the present research, the isothermal and non-isothermal crystallization of polypropylene (PP) phase in PP-rich poly(acrylonitrile–butadiene–styrene)/polypropylene (ABS/PP) blends was studied. The effect of nanofillers’ incorporation and specialty of organically modified montmorillonite (OMMT) and graphene, into the prepared blends on the isothermal and non-isothermal crystallization of PP phase, were investigated. Moreover, kinetic study of their isothermal crystallization process was carried out, by applying the Avrami equation. The addition of ABS to the PP matrix increased the crystallization rate of PP at 130 °C. The incorporation of OMMT in pure PP accelerated slightly the crystallization process, whereas in ABS/PP blends, it seemed to retard crystallization, due to interactions between ABS phase and organoclay. The incorporation of graphene in pure PP accelerated impressively its isothermal crystallization, while the addition of ABS in graphene/PP nanocomposite slowed down the crystallization rate of PP. The effect of ABS and nanofillers, separately or in combination, on the crystallization of PP phase was reflected on the kinetic parameters of the Avrami equation. Regarding the non-isothermal crystallization, ABS/PP blends presented higher crystallization temperature (T c) compared to pure PP. The organoclay reinforcement did not have any obvious effect on this temperature, whereas graphene caused significant increase, acting as nucleating agent. The presence of ABS to PP increased the concentration of the β-crystalline phase, reaching its maximum value at 30 mass% ABS content. The organoclay decreased the β-PP in ABS/PP blends, whereas graphene eliminated it.  相似文献   

14.
A serial of β-nucleated polypropylene (β-PP)/nano-calcium carbonate (nano-CaCO3)/ short poly(ethylene-terephthalate) (PET) fiber composites were prepared using extrusion blending. Maleic anhydride grafted PP (PP-g-MA) was used to modify the compatibility. The relationships among components, structure, and properties of the PP composites were studied. The results show that adding nano-CaCO3 improved the mechanical properties of the materials. Adding PET fiber increased the rigidity and toughness but the tensile strength decreased. PP-g-MA modified the compatibility of the components of the composites. Both PET fiber and nano-CaCO3 had nucleation effect on the PP crystallization and slightly induced the formation of β crystals. Ternary β-PP/nano-CaCO3/PET fiber composites contained high β-crystal content, and the compatibilizer exhibited synergy effect with β nucleating agent to further increase the β-crystal content in the blends. Mo’s method could satisfactorily describe the nonisothermal crystallization behavior of ternary composites, whereas Jeziorny and Ozawa methods failed to do the same ideally.  相似文献   

15.
A series of compatibilizers, including polypropylene (PP) grafted with 2‐tertbutyl‐6‐(3‐tertbutyl‐ 2‐hydroxy‐5‐methylbenzyl)‐4‐methylphenyl acrylic ester (BPA), glycidyl methacrylate (GMA), GMA/styrene (GMA‐st), and 2‐allyl bisphenol A (2A) were investigated for the purpose of improving the compatibility of PP/polycarbonate (PC) blends. PP‐g‐BPA shows a remarkable compatibilizing effect on PP/PC blends since it has similar group‐benzene ring with PC, and it is a sort of heat‐resistant antioxidant in the meantime, which can reduce the molecular degradation of PP during grafting and blending under high temperatures. Its compatibilizing effect was examined in terms of the mechanical, thermal properties, and morphologies. PP/PC blends show a decreasing and much more homogeneous size of dispersed PC particles through addition of a small amount of PP‐g‐BPA, and dynamic mechanical analysis (DMA) reveals a noticeable approach of Tg between PP and PC, indicating the improvement of the compatibility of PP/PC blends. Furthermore, styrene‐ethylene‐butylene‐styrene (SEBS) as a toughening rubber and a compatibilizer was applied to PP/PC blends. Around 25 wt% SEBS and 20 wt% PC lead to high toughness and strength of PP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Non-nucleated polypropylene alloy with polyamide 6 (PP/PA6) and β-nucleated polypropylene (β-PP)/PA6 alloy, as well as its compatibilized version with maleic anhydride grafted PP (PP-g-MA) were prepared with an internal mixer. In the all alloys, PP formed a continuous phase with a dispersive PA6. Effects of PA6 on the non-isothermal crystallization behavior, melting characteristics and the β-PP content of alloys were investigated by differential scanning calorimeter (DSC) and wide angle X-ray diffraction (WAXD). The results indicated that the crystallization temperature () of PP shifts to high temperature in the non-nucleated PP/PA6 alloys due to the α-nucleating effect of PA6. However, in the β-nucleated PP/PA6 alloys, PA6 hardly has an effect on the of PP. The β-PP content in the alloys not only depends on the content of the PA6, but also on the melting temperatures. It is proved by etching the alloys with sulfuric acid that the nucleating agent mainly disperses in the PA6 phase and/or the interface between PP and PA6 when blended at high temperature. Addition of PP-g-MA promotes the formation of β-PP in the β-nucleated PP/PA6 alloys. The increase in the PA6 content has a little influence on the of PP and the β-PP content in the compatibilized β-nucleated PP/PA6 alloys. The non-isothermal crystallization kinetics of PP in the alloys was evaluated by Mo’s method.  相似文献   

17.
X‐ray diffraction and differential scanning calorimeter (DSC) methods have been used to investigate the crystallization behavior and crystalline structure of hexamethylenediamine (HMDA)‐modified maleic‐anhydride‐grafted polypropylene/clay (PP‐g‐MA/clay) nanocomposites. These nanocomposites have been prepared by using HMDA to graft the PP‐g‐MA (designated as PP‐g‐HMA) and then mixing the PP‐g‐HMA polymer in hot xylene solution, with the organically modified montmorillonite. Both X‐ray diffraction data and transmission electron microscopy images of PP‐g‐HMA/clay nanocomposites indicate that most of the swellable silicate layers are exfoliated and randomly dispersed into PP‐g‐HMA matrix. DSC isothermal results revealed that introducing 5 wt % of clay into the PP‐g‐HMA structure causes strongly heterogeneous nucleation, which induced a change of the crystal growth process from a three‐dimensional crystal growth to a two‐dimensional spherulitic growth. Mechanical properties of PP‐g‐HMA/clay nanocomposites performed by dynamic mechanical analysis show significant improvements in the storage modulus when compared to neat PP‐g‐HMA. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3242–3254, 2005  相似文献   

18.
β-nucleated PP/PET blends were prepared using nano-CaCO3 supported β-nucleating agent (β-NA), PP as matrix, and PET as dispersion phase. The effects of preparation methods, PET content, and melting temperature on the non-isothermal crystallization behavior and the melting characteristic and polymorphic composition of PP in the blends were investigated by differential scanning calorimeter (DSC) and wide angle X-ray diffraction (WAXD). The results indicated that the PP crystallized predominantly in β-modification in the presence of β-NA. However, efficiency of β-NA for PP crystallization decreased with addition of PET and increasing PET contents. The β-nucleation of β-NA for PP crystallization in the blends was dependant on the preparation methods. The high β-nucleation and high β-PP content were obtained for PP/PET blend prepared at the temperature of 265 °C and added the β-NA into the blend at the temperature of 180 °C. However, the addition of β-PP or β-NA into blends at 265 °C decreased the β-nucleation, and no β-PP was formed because the β-NA mainly dispersed on the PET dispersion phase or at the interface between PP and PET.  相似文献   

19.
In this study,the maleic anhydride(MAH)and styrene(St)dual monomers grafted polypropylene(PP)and poly[styrene-b-(ethylene-co-butylene)-b-styrene](SEBS),i.e.PP-g-(MAH-co-St)and SEBS-g-(MAH-co-St)are prepared as multi-phase compatibilizers and used to compatibilize the PA6/PS/PP/SEBS(70/10/10/10)model quaternary blends.Both PS and SEBS are encapsulated by the hard shell of PP-g-(MAH-co-St)in the dispersed domains(about 2μm)of the PA6/PS/PP-g-(MAH-co-St)/SEBS(70/10/10/10)quaternary blend.In contrast,inside the dispersed domains(about 1μm)of the PA6/PS/PP/SEBS-g-(MAH-co-St)(70/10/10/10)quaternary blend,the soft SEBS-g-(MAH-co-St)encapsulates both the hard PS and PP phases and separates them.With increasing the content of the compatibilizers equally,the morphology of the PA6/PS/(PP+PP-g-(MAH-co-St))/(SEBS+SEBS-g-(MAH-co-St))(70/10/10/10)quaternary blends evolves from the soft(SEBS+SEBS-g-(MAH-co-St))encapsulating PS and partially encapsulating PP(about 1μm),then to PS exclusively encapsulated by the soft SEBS-g-(MAH-co-St)and then separated by PP-g-(MAH-co-St)inside the smaller domains(about 0.6μm).This morphology evolution has been well predicted by spreading coefficients and explained by the reaction between the matrix PA6 and the compatibilizers.The quaternary blends compatibilized by more compatibilizers exhibit stronger hierarchical interfacial adhesions and smaller dispersed domain,which results in the further improved mechanical properties.Compared to the uncompatibilized blend,the blend with both 10 wt%PP-g-(MAH-co-St)and 10 wt%SEBS-g-(MAH-co-St)has the best mechanical properties with the stress at break,strain at break and impact failure energy improved significantly by 97%,71%and 261%,respectively.There is a strong correlation between the structure and property in the blends.  相似文献   

20.
The morphology and crystallization behavior of blends of polypropylene (PP) and an ethylene-based thermoplastic elastomer (TPO) were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The SEM images showed a two-phase morphology for these blends. As TPO was partially crystalline, two distinct peaks were observed in both heating and cooling scans of DSC. The crystallization temperature of TPO in blends was higher than pure TPO. In contrast, the crystallization temperature of PP in blends was lower than pure PP. The crystallization behavior of blends was modeled by Avrami equation. It was observed that the presence of TPO accelerated the growth rate of crystals of PP in PP/TPO blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号