首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Molecular dynamics (MD) simulations of bulk atactic polystyrene have been performed in a temperature range from 100 K to 650 K at atmospheric pressure. Local translational mobility has been investigated by measuring the mean square translational displacements of monomers. The long-time asymptotic slope of these dependencies is 0.54 at T>Tg, showing Rouse behavior. Cross-over from motion in the cage to Rouse like dynamics has been studied at T>Tg with a characteristic crossover time follows a power law behavior as a function of T, as predicted by mode-coupling theory (MCT). Local orientational mobility has been studied via the orientational autocorrelation functions, ACFs, (Legendre polynomials of the first and second, order) of both the main-chain and side-group bonds. The relaxation times of the orientational α-relaxation follow the same power law (γ∼2.9) as the characteristic translational diffusion time. Below T>Tg both types of dynamics are described by the same activated law. The ACFs time-distribution functions reveal the existence of activated local rearrangements already above T>Tg.  相似文献   

2.
Summary: In order to have better insight into the polymer specifics of the dynamic glass transition molecular dynamics (MD) computer simulations of three glass-formers have been carried out: low-molecular-weight isopropylbenzene (iPB), brittle atactic polystyrene (PS) and tough bisphenol A polycarbonate (PC). Simulation of the uniaxial deformation of these mechanically different types of amorphous polymers shows that the mechanical experimental data could be realistically reproduced. Now the objective is to study the local orientational mobility in the non-deformed isotropic state and to find the possible connection of the segmental dynamics with the different bulk mechanical properties. Local orientational mobility has been studied via Legendre polynomials of the second order and CONTIN analysis. Insight into local orientational dynamics on a range of length- and time scales is acquired. The fast transient ballistic process describing the very initial part of the relaxation has been observed for all temperatures. For all three simulated materials the slowing down of cage escape (α-relaxation) follows mode-coupling theory above Tg, with non-universal, material-specific exponents. Below Tg universal activated segmental motion has been found. At high temperature the α process is merged with the β process. The β process which corresponds to the motions within cage continues below Tg and can be described by an activation law.  相似文献   

3.
Copolymers of methyl methacrylate (MMA) with 2,3,4‐ and 2,4,6‐trifluorophenyl maleimides (TFPMIs) were synthesized by a free radical initiator, azobisisobutyronitrile, in 1,4‐dioxane and also in bulk. The refractive indexes of the copolymers were in the range of 1.49–1.52 at 532 nm. The Tgs were 133–195 °C depending on copolymer compositions. In addition, the copolymers were thermally stable, Td > 350 °C. The orientational and photoelastic birefringence of the copolymers were also investigated. As both of the orientational and photoelastic birefringences of PMMA are negative, whereas those of poly(TFPMI)s are positive, we could obtain nearly zero orientational and photoelastic birefringence polymers when the ratios of 2,3,4‐TFPMI/MMA were 15/85 and 5/95 mol %, respectively. For 2,4,6‐TFPMI, zero orientational and photoelastic birefringences could be obtained when the ratios of 2,4,6‐TFPMI/MMA were 12/88 and 3/97 mol %, respectively. The Tgs of those copolymers with zero birefringences were in the range of 135–140 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Diffusion of gases in polymers below the glass transition temperature, Tg, is strongly modulated by local chain dynamics. For this reason, an analysis of pulsed field gradient (PFG) nuclear magnetic resonance (NMR) diffusion measurements considering the viscoelastic behavior of polymers is proposed. Carbon‐13 PFG NMR measurements of [13C]O2 diffusion in polymer films at 298 K are performed. Data obtained in polymers with Tg above (polycarbonate) and below (polyethylene) the temperature set for diffusion measurements are analyzed with a stretched exponential. The results show that the distribution of diffusion coefficients in amorphous phases below Tg is wider than that above it. Moreover, from a PFG NMR perspective, full randomization of the dynamic processes in polymers below Tg requires long diffusion times, which suggests fluctuations of local chain density on a macroscopic scale may occur. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 231–235, 2010  相似文献   

5.
It has been shown that the free volume fraction at T_g is not a universal parameter for linear polymers of different molecular structure. The reason is that the volume expansion at T_g is partially contributed from the change of the numbers of conformations of isolated molecular chains due to internal rotation. In this paper, glassy transformation was connected with internal rotation of isolated molecular chains, and the relationship between free volume fraction of polymers at T_g and energy e of rotational isomerization of isolated molecular chains was formulated, e=-k·T_g·In (△α·T_g/1-△α. T_g). The values of calculated from the above formula are in good agreement with those published in the literatures. Thus, the method described in this paper can be used to estimate a parameter for the flexibility of isolated molecular chains.7  相似文献   

6.
Poly(ethylene naphthalene‐2,6‐dicarboxylate) has been uniaxially stretched at different draw ratios and at two different temperatures below and above its glass transition (Tg ~ 120 °C) respectively, at 100 and 160 °C. Crystallinity has been evaluated from calorimetric analyses and compared to the values deduced by FTIR spectroscopic data. As expected, the obtained results are quite similar and show that films stretched at lower temperature (100 °C) are more crystalline than those stretched at 160 °C. Optical anisotropy associated with orientation has been evaluated by birefringence and show that films stretched at 100 °C are more birefringent than those stretched at 160 °C as a result of a higher chain relaxation above Tg. Polarized FTIR was also performed to evaluate the individual orientation of amorphous and crystalline phases by calculating dichroic ratios R and orientation functions 〈P2(cos θ)〉 and also show that amorphous and crystalline phases are more oriented in the case of films stretched below Tg. Nevertheless, the orientation of the amorphous phase is always weaker than that of the crystalline phase. Films stretched at 100 °C show a rapid increase in orientation (and crystallinity) with draw ratio and 〈P2(cos θ)〉 reaches a limit value when draw ratio becomes higher than 3.5. Films drawn at 160 °C are less oriented and their orientation is increasing progressively with draw ratio without showing a plateau. A careful measurement of the IR absorbance was necessary to evaluate the structural angles of the transition moments to the molecular chain axis. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1950–1958, 2007  相似文献   

7.
We clarified the birefringence properties of poly(methyl methacrylate), poly(ethyl methacrylate), poly(isobutyl methacrylate), poly(cyclohexyl methacrylate), poly(isopropyl methacrylate), and poly(tert‐butyl methacrylate). We demonstrated that the conformational change in polymer molecules that causes orientational birefringence differs from that causing photoelastic birefringence. Orientational birefringence depends mainly on the orientation of the main chains of the methacrylate polymers above Tg. On the other hand, photoelastic birefringence in elastic deformation below Tg depends mainly on the orientation of the side chains while the main chains are scarcely oriented. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2029–2037, 2010  相似文献   

8.
The effect of drawing on the glass-transition temperature of amorphous poly(ethylene terephthalate) has been studied. The Tg decreases to a minimum at a draw ratio of 1.5, then increases to a maximum at a draw ratio of about 2.0, and again decreases with increasing draw ratio. The relationship between the change of structure and Tg is discussed in terms of the configurational entropy and the rate of molecular motion in local-mode relaxation. On the basis of configurational entropy, the decrease of Tg at the beginning of drawing depends on the increase of configurational entropy, while at draw ratios above 2.0 it depends on the increase of entropy associated with intermolecular interaction. From the point of view of molecular motion, it is concluded that the change of Tg is determined by local oscillations in the amorphous region.  相似文献   

9.
Thin films of 3,4-epoxycyclohexylmethyl 3',4'-epoxycyclohexane carboxylate were UV irradiated (1.1 J cm-2) under isothermal conditions ranging from 0 to 50°C. Under these conditions the polymerization advanced quickly but only to a conversion level of less than 10% before the reaction rate slowed by more than an order of magnitude. This drop off in rate was not caused by the glass transition temperature, T g, reaching or exceeding the reaction temperature, T rxn, since the epoxide's T g remained at least 40°C below T rxn. Raising the sample temperature above 60°C caused a sharp increase in the conversion level. At 100°C conversion exceeds 80% and the ultimate T g approaches 190°C. The addition of 10 mass% 1,6-hexanediol, HD, to the epoxy caused the conversion at room temperature to quintuple over the level obtained without the alcohol present. The heat liberated from this alcohol epoxy blend during cure on a UV conveyor belt system caused the sample's temperature to increase by about 100°C above ambient whereas the epoxy alone under these conditions only experienced a modest temperature rise of about 26°C. If the amount of HD in the blend is increased above 10% the heat of reaction at 23°C decreases due to HD being trapped in a nonreactive crystalline phase. Boosting reaction temperatures above 50°C melts the HD crystals and yields significantly improved conversion ratios. As the level of alcohol blended with the epoxy is raised its ultimate T g is lowered and when the concentration of alcohol in the blend nears 30 mass%T g drops below room temperature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The effects of the dynamic polymerization method and temperature on the molecular aggregation structure and the mechanical and melting properties of thermoplastic polyurethanes (TPUs) were successfully clarified. TPUs were prepared from poly (ethylene adipate) glycol (Mn = 2074), 4,4′‐diphenylmethane diisocyanate and 1,4‐butanediol by the one‐shot (OS) and the prepolymer (PP) methods in bulk at dynamic polymerization temperatures ranging from 140 to 230 °C. Glass‐transition temperatures (Tgs) of the soft segment and melting points (Tms) of the hard segment domains of OS‐TPUs increased and decreased, respectively, with increasing polymerization temperatures, but those of PP‐TPUs were almost independent of the polymerization temperature. Tgs of the soft segment and Tms of the hard segment domains of these TPUs polymerized above 190 °C were almost the same regardless of the polymerization method. Solid‐state nuclear magnetic resonance spectroscopy (NMR) analyses of OS‐ and PP‐TPUs showed that the relative proton content of fast decay components, which corresponds to the hard segment domains, in these TPUs decreased with increasing polymerization temperatures. These results clearly show that the degree of microphase separation becomes weaker with increasing polymerization temperatures. The temperature dependence of dynamic storage modulus and loss tangent of OS‐TPUs coincided with those of PP‐TPUs at polymerization temperature above 190 °C. The apparent shear viscosity for OS‐ and PP‐TPUs polymerized above 190 °C approached a Newtonian behavior at low shear rates regardless of the polymerization method. These results indicate that TPUs polymerized at higher temperatures form almost the same molecular aggregation structures irrespective of the dynamic polymerization method. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 800–814, 2007  相似文献   

11.
Molecular relaxations in 47-wt % polypropylene oxide of molecular weight 4000 in toluene as diluent have been studied by dielectric permittivity and loss measurements from 77 to 320 K, in the frequency range 1 Hz to 2 × 105 Hz. One relaxation process (β process) is observed in the glassy state below Tg (= 148 K), and two processes are observed in the supercooled liquid at T > Tg. Relative to the amplitude of the fast relaxation process (i.e., the local segmental motions of the polymer chain), the amplitude of the slow process is increased and that of the β process decreased on dilution of the pure polymer. The β process has an Arrhenius energy of 17 kJ mol?1. The rates of the two relaxations at T > Tg follow the Vogel–Fulcher–Tamman equation and seem to merge on cooling the liquid towards Tg. The relative temperatures at which the three relaxation processes occur at the rate of 1 kHz remain largely unaffected on dilution. The increase in static permittivity of the solution on cooling is more than anticipated from the temperature effects alone. It is suggested that the increase is due to the enhanced short-range orientational correlation of the dipoles, which may involve H bonding.  相似文献   

12.
The formerly implemented molecular design concept behind glass-forming liquid crystals (gLCs) was generalized by increasing the volume of the non-mesogenic central core, with an attendant increase in the number of nematic pendants, using 5-hydroxyisophthalic acid as the bridging unit. New nematic gLCs were synthesized and characterized, showing an elevation in Tg by 30 to 40°C with no definite trend in Tc over the benzene, cis, cis-cyclohexane, and exo, endo-bicyclo[2.2.2]oct-7-ene base cores. The exo, exo-configured gLC showed a higher Tg and a higher T c than the exo, endo-counterpart. Morphological characterization with X-ray diffractometry revealed the non-crystalline nature of pristine samples and the morphological stability of thermally processed gLC films against recrystallization for six months. Nematic gLC films were prepared for characterization by FTIR linear dichroism, resulting in an orientational order parameter in the range 0.52 to 0.63. A chiral-nematic gLC derived from exo, exo-bicyclo[2.2.2.]oct-7-ene also showed an elevation in Tg by 10 to 20°C over the cyclohexane-based systems reported previously. With (S)-(-)-1-phenylethylamine as the chiral moiety, the left-handed, chiral-nematic gLC film yielded a selective reflection band centred around 375 nm. Tunability of selective reflection from the UV to visible region was demonstrated by mixing the chiral-nematic and nematic gLCs at varying ratios.  相似文献   

13.
Dielectric measurements, differential thermal analyses (DTA), and broad-line proton magnetic resonance (NMR) measurements are reported on the system poly(vinyl acetate)–toluene. Four dielectric relaxations were observed between 80 and 400°K. From proton NMR measurements on solutions in toluene and in deuterated toluene, the relaxation processes can be assigned, respectively, to segmental motion of poly(vinyl acetate), α; motion of side group, β′ rotation of toluene, β; local motions of poly(vinyl acetate) and toluene, γ, in order of appearance with decreasing temperature. Two stepwise changes in DTA traces have been observed and can be assigned as glass transition points TgI and TgII. Comparison of these glass transition points with temperatures at which dielectric relaxation times for the α and β processes are 100 sec, indicate that segmental motion of poly(vinyl acetate) and rotation of toluene are frozen-in at TgI and TgII, respectively. Activation plots for the α process conform to the Vogel–Tamman equation. In terms of the parameters A, B, and T0 of the equation, TgI can be represented by an expression of the form TgIT0 + B/(A + 3). In the range of concentration above 50% by weight, A and B are almost independent of concentration but T0 varies strongly. The nature of the secondary dispersions is also discussed.  相似文献   

14.
Polymeric UV absorbers have been prepared by free-radical solution copolymerization at 75°C of methyl methacrylate and 2-hydroxy-4-methacryloyloxybenzophenone monomers at low conversion (around 10%). The composition of the copolymers was determined by UV, IR, and NMR studies. The molecular weight was estimated by GPC. The reactivity ratios were determined by several methods. Viscosity was used to study the effect of copolymer composition and solvents. The copolymers were also analyzed by TGA and DSC, and DSC was used to study the effect of copolymer composition on Tg.  相似文献   

15.
16.
We report the thermal, optical, and mechanical properties of random copolymers produced by radical copolymerizations of diisopropyl fumarate (DiPF) with 1‐adamantyl acrylate (AdA) and bornyl acrylate (BoA). The effects of a methylene spacer included in the main chain and bulky ester alkyl groups in the side chain on the copolymer properties are discussed. The produced copolymers are characterized by NMR and UV–vis spectroscopies, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis (DMA). The copolymerization rate and the molecular weight of the copolymers increase with an increase in the acrylate content in feed during the copolymerization (Mw = 25–110 × 103). The onset temperature of decomposition (Td5) and the glass transition temperature (Tg) of the copolymers also increase according to the content of the acrylate units (Td5 = 296–329 °C and 281–322 °C, Tg = 80–133 °C and 91–106 °C for the copolymers of DiPF with AdA and BoA, respectively). Transparent and flexible copolymer films are obtained by a casting method and their optical properties such as transparency and refractive indices are investigated (nD = 1.478–1.479). The viscoelastic data of the copolymers are collected by DMA measurements under temperature control. The storage modulus decreases at a temperature region over the Tg value of the copolymers, depending on the structure and amount of the acrylate units. The sequence structure of the copolymers is analyzed based on monomer reactivity ratios and composition in order to discuss the copolymer properties related to chain rigidity and sequence length distribution. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 288–296  相似文献   

17.
Difunctional acrylates and methacrylate monomers have been made which are high order smectic liquid crystal (or crystalline) at room temperature. This report discusses materials with the following structure: F–S–M–S–F, where F is a functional group, acrylate or methacrylate (A or M); S is a spacer (CH2)n(n), and M is a mesogen—in this case 4,4′-dioxybiphenyl (B). They are codified as BnA or BnM where n is the number of methylenes in the spacer. High conversion with high Tg can be obtained when polymerizing in the smectic state because the reactive end groups are concentrated in a small volume and can react well with little or no diffusion. B2A, B3A, B6A, B11A, and B3M were polymerized in the smectic state and compared to polymers made at temperatures where the monomers were isotropic. High conversion was obtained below final Tg—even then, probably because the polymers were ordered. All the polymers were studied by WAXD and dynamic mechanical spectroscopy. Solid-state NMR on B3A showed that there was very high conversion of the double bonds at all temperatures. B3A photopolymerized in the smectic state (60–76°C) produced a crystalline polymer with Tg = 185°C (1 Hz). When photopolymerized at 85°C, above the isotropization temperature (Ti), a poorly organized polymer was obtained with a Tg of 155°C (1 Hz). Monomers with an odd number of methylene groups as spacers were crystalline after polymerization. With an even number of methylene groups, they lost most of their crystallinity on polymerization below Ti, but retained a low order smectic structure. Similar structures were obtained with all the monomers when they were polymerized above Ti. There was little effect of polymerization temperature on Tg when the spacers had an even number of methylene groups. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Repeating sequence copolymers of poly(lactic‐co‐caprolactic acid) (PLCA), poly(glycolic‐co‐caprolactic acid) (PGCA), and poly(lactic‐co‐glycolic‐co‐caprolactic acid) (PLGCA) have been synthesized by polymerizing segmers with a known sequence in yields of 50–85% with Mns ranging from 18–49 kDa. The copolymers exhibited well‐resolved NMR resonances indicating that the sequence encoded in the segmers used in their preparation is retained and that transesterification is minimal. The exact sequences allowed for unambiguous assignment of the NMR spectra, and these standards were compared with the data previously reported for random copolymers. The glass transition temperatures (Tgs) of the PLCA and PGCA copolymers were found to depend primarily on monomer ratio rather than sequence. Sequence dependent Tgs were, however, noted for the PLGCA polymers with 1:1:1 L:G:C ratios; poly LGC and poly GLC exhibited Tgs that differed by nearly 8 °C. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
A triamine monomer, 1,3,5‐tris(4‐aminophenoxy)benzene (TAPOB), was synthesized from phloroglucinol and 4‐chloronitrobenzene, and it was successfully polymerized into soluble hyperbranched polyimides (HB PIs) with commercially available dianhydrides: 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA). Different monomer addition methods and different monomer molar ratios resulted in HB PIs with amino or anhydride end groups. From 1H NMR spectra, the degrees of branching of the amino‐terminated polymers were estimated to be 0.65, 0.62, and 0.67 for 6FDA–TAPOB, ODPA–TAPOB, and BTDA–TAPOB, respectively. All polymers showed good thermal properties with 10% weight‐loss temperatures (T10's) above 505 °C and glass‐transition temperatures (Tg's) of 208–282 °C for various dianhydrides. The anhydride‐terminated HB PIs showed lower T10 and Tg values than their amino‐terminated counterparts. The chemical conversion of the terminal amino or anhydride groups of the 6FDA‐based polyimides into an aromatic imido structure improved their thermal stability, decreased their Tg, and improved their solubility. The HB PIs had moderate molecular weights with broad distributions. The 6FDA‐based HB PIs exhibited good solubility even in common low‐boiling‐point solvents such as chloroform, tetrahydrofuran, and acetone. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3804–3814, 2002  相似文献   

20.
Commercial polydisperse atactic poly(methyl methacrylate) (PMMA) exhibits a decreased glass transition temperature (Tg) when the film thickness is less than ~60 nm, whereas more model atactic PMMA shows an increased Tg in thin films supported on clean silicon wafers. NMR indicates no difference in tacticity, so the divergent thin film behavior appears related to the relative distribution of molecular mass. Extraction of some low molecular weight PMMA components from the commercial sample results in a significant modification of the thin film Tg compared with the initial PMMA fraction. The extracted sample exhibits initially a slight decrease in Tg as the film thickness is reduced below ~60 nm, but then Tg appears to increase for films thinner than 20 nm. These results illustrate the sensitivity of polymer thin film properties to low‐molecular mass components and could explain some of the contradictory reports on the Tg of polymer thin films that exist in the literature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号