首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Initiated by an organic molecule trifluoromethanesulfonimide (HNTf2) without any Lewis acid or Lewis base stabilizer, cationic polymerization of isobutyl vinyl ether (IBVE) takes place rapidly and the polymerization is proved to be in a controlled/living manner. The conversion of IBVE could easily achieve 99% in seconds. The product poly(isobutyl vinyl ether) is narrowly distributed and its molecular weight increases linearly with time and fits well with the corresponding theoretical value. This single‐molecular initiating system also works well in the living cationic polymerization of ethyl vinyl ether. HNTf2 is considered playing multiple roles which include initiator, activator, and stabilizer in the polymerization. It is quite different from the hydrogen halide‐catalyzed polymerizations of vinyl ethers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1373‐1377  相似文献   

3.
The living cationic polymerization of isobutyl vinyl ether (IBVE) was investigated in the presence of various cyclic and acyclic ethers with 1-(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3, 1 ]/EtAlCl2 initiating system in hexane at 0°C. In particular, the effect of the basicity and steric hindrance of the ethers on the living nature and the polymerization rate was studied. The polymerization in the presence of a wide variety of cyclic ethers [tetrahydrofuran (THF), tetrahydropyran (THP), oxepane, 1,4-dioxane] and cyclic formals (1,3-dioxolane, 1,3-dioxane) gave living polymers with a very narrow molecular weight distribution (MWD) (M?ω/M?n ≤ 1.1). On the other hand, propylene oxide and oxetane additives resulted in no polymerization, whereas 1,3,5-trioxane gave the nonliving polymer with a broader MWD. The polymerization rates were dependent on the number of oxygen and ring sizes, which were related to the basicity and the steric hindrance. The order of the apparent polymerization rates in the presence of cyclic ether and formal additives was as follows: nonadditive ~ 1,3,5-trioxane ? 1,3-dioxane > 1,3-dioxolane ? 1,4-dioxane ? THP > oxepane ? THF ? oxetane, propylene oxide ? 0. The polymerization in the presence of the cyclic formals was much faster than that of the cyclic ethers: for example, the apparent propagation rate constant k in the presence of 1,3-dioxolane was 103 times larger than that in the presence of THF. Another series of experiments showed that acyclic ethers with oxyethylene units were effective as additives for the living polymerization with 1 /EtAlCl2 initiating system in hexane at 0°C. The polymers obtained in the presence of ethylene glycol diethyl ether and diethylene glycol diethyle ether had very narrow molecular weight distribution (M?ω/M?n ≤ 1.1), and the M?n was directly proportional to the monomer conversion. The polymerization behavior was quite different in the polymerization rates and the MWD of the obtained polymers from that in the presence of diethyl ether. These results suggested the polydentate-type interaction or the alternate interaction of two or three ether oxygens in oxyethylene units with the propagating carbocation, to permit the living polymerization of IBVE. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
5.
Trimethylsilyl halides (Me3SiY), in conjunction with zinc halides (ZnX2) (Y and X:I, Br, Cl), were employed to investigate the living cationic polymerization of isobutyl vinyl ether (IBVE) in toluene at ?15°C in the presence of p-methoxybenzaldehyde; with the aldehyde and IBVE monomer, Me3SiY yields an initiating species [Me3Si? O? CHC6H4(OMe) ? CH2CH(OiBu) ? Y] that triggers the IBVE polymerization via the activation of its carbon-halogen bond (C? Y) by ZnX2 into Cδ+…?Yδ?…?ZnX2. Living polymerizations occurred with the silyl iodide and bromide irrespective of the type of ZnX2, either when Y = X (Me3Sil/Znl2 and Me3SiBr/ZnBr2) or when Y ≠ X (Me3Sil/ZnBr2, Me3SiI/ZnCl2, and Me3SiBr/Znl2). With these five initiating systems, the number-average molecular weights (M?n) of the polymers increased in proportion to monomer conversion, and the molecular weight distributions (MWDs) of the polymers were narrow (M?w/M?n = 1.1?1.2). The Me3SiCl-based systems (Me3SiCl/ZnCl2 and Me3SiCl/Znl2), in (Me3SiCl/Znl2), in contrast, failed to give perfectly living polymerization; the M?n indeed increased with conversion, but the MWDs of the polymers were broader (M?w/M?n = 1.3?1.5). Thus, the living nature of the polymerizations with Me3SiY/Znx2 is primarily determined by the halogen Y in Me3SiY, which generates the terminal carbon-halogen bond (C? Y) that is activated by ZnX2 for the propagation via a species Cδ+…?Yδ?…?ZnX2. For Y?, not only the iodide but the bromide anion also is suited for living cationic polymerization. The virtual absence of the effects of X in ZnX2 implies that the halogen exchange between ZnX2 and Y from Me3 SiY at the growing end (Cλ+…?Yδ?…?ZnX2 ?Cδ+…?Xδ?…?ZnXY) is absent or negligible.  相似文献   

6.
A quite small dose of a poisonous species was found to induce living cationic polymerization of isobutyl vinyl ether (IBVE) in toluene at 0 °C. In the presence of a small amount of N,N‐dimethylacetamide, living cationic polymerization of IBVE was achieved using SnCl4, producing a low polydispersity polymer (weight–average molecular weight/number–average molecular weight (Mw/Mn) ≤ 1.1), whereas the polymerization was terminated at its higher concentration. In addition, amine derivatives (common terminators) as stronger bases allow living polymerization when a catalytic quantity was used. On the other hand, EtAlCl2 produced polymers with comparatively broad MWDs (Mw/Mn ~ 2), although the polymerization was slightly retarded. The systems with a strong base required much less quantity of bases than weak base systems such as ethers or esters for living polymerization. The strong base system exhibited Lewis acid preference: living polymerization proceeded only with SnCl4, TiCl4, or ZnCl2, whereas a range of Lewis acids are effective for achieving living polymerization in the conventional weak base system such as an ester and an ether. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6746–6753, 2008  相似文献   

7.
8.
Living cationic polymerization of 2‐adamantyl vinyl ether (2‐vinyloxytricyclo[3.3.1.1]3,7decane; 2‐AdVE) was achieved with the CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride/ethyl acetate [CH3CH(OiBu)OCOCH3/Et1.5AlCl1.5/CH3COOEt] initiating system in toluene at 0 °C. The number‐average molecular weights (Mn's) of the obtained poly(2‐AdVE)s increased in direct proportion to monomer conversion and produced the polymers with narrow molecular weight distributions (MWDs) (Mw/Mn = ~1.1). When a second monomer feed was added to the almost polymerized reaction mixture, the added monomer was completely consumed and the Mn's of the polymers showed a direct increase against conversion of the added monomer. Block and statistical copolymerization of 2‐AdVE with n‐butyl vinyl ether (CH2?CH? O? CH2 CH2CH2CH3; NBVE) were possible via living process based on the same initiating system to give the corresponding copolymers with narrow MWDs. Grass transition temperature (Tg) and thermal decomposition temperature (Td) of the poly(2‐AdVE) (e.g., Mn = 22,000, Mw/Mn = 1.17) were 178 and 323 °C, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1629–1637, 2008  相似文献   

9.
Our recent extensive research on Lewis acid catalysts with a weak base for the cationic polymerization of vinyl ethers led to unprecedented living reaction systems: fast living polymerization within 1–3 s; a wide choice of metal halides containing Al, Sn, Fe, Ti, Zr, Hf, Zn, Ga, In, Si, Ge, and Bi; and heterogeneously catalyzed living polymerization with Fe2O3. The use of added bases for the stabilization of the propagating carbocation and the appropriate selection of Lewis acid catalysts were crucial to the success of such new types of living polymerizations. In addition, the base‐stabilized living polymerization allowed the quantitative synthesis of star‐shaped polymers with a narrow molecular weight distribution via polymer‐linking reactions and the precision synthesis and self‐assembly of stimuli‐responsive block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1801–1813, 2007.  相似文献   

10.
The living cationic polymerization of 4‐[2‐(vinyloxy)ethoxy]azobenzene (AzoVE) was achieved with various Lewis acids in the presence of an ester as an added base. When Et1.5AlCl1.5 was used as a catalyst, the living polymerization system was controllable by UV irradiation as a result of cis and trans isomerization of the azobenzene side groups. Furthermore, an initiating system consisting of SnCl4 and EtAlCl2 realized fast living polymerization of AzoVE. The polymerization rate of this system was 3 orders of magnitude faster than that obtained with Et1.5AlCl1.5. Poly(4‐[2‐(vinyloxy)ethoxy]azobenzene) was soluble in a diethyl ether/hexane mixture at 25 °C but became insoluble upon irradiation with UV light. This phase‐transition behavior was sensitive and reversible upon irradiation with UV or visible light and reflected the change in polarity occurring with cis and trans isomerization of the azobenzene side groups in the polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5138–5146, 2005  相似文献   

11.
12.
Cationic polymerization of 2,3‐dihydrofuran (DHF) and its derivatives was examined using base‐stabilized initiating systems with various Lewis acids. Living cationic polymerization of DHF was achieved using Et1.5AlCl1.5 in toluene in the presence of THF at 0 °C, whereas it has been reported that only less controlled reactions occurred at 0 °C. Monomer‐addition experiments of DHF and the block copolymerization with isobutyl vinyl ether demonstrated the livingness of the DHF polymerization: the number–average molecular weight of the polymers shifted higher with low polydispersity as the polymerization proceeded after the monomer addition. Furthermore, this base‐stabilized cationic polymerization system allowed living polymerization of ethyl 1‐propenyl ether and 4,5‐dihydro‐2‐methylfuran at ?30 and ?78 °C, respectively. In the polymerization of 2,3‐benzofuran, the long‐lived growing species were produced at ?78 °C. The obtained polymers have higher glass transition temperatures compared to poly(acyclic alkyl vinyl ether)s. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4495–4504, 2008  相似文献   

13.
Stereoregulation in the cationic polymerization of various alkyl vinyl ethers was investigated with bis[(2,6‐diisopropyl)phenoxy]titanium dichloride ( 1 ; catalyst) in conjunction with the HCl adduct of isobutyl vinyl ether as an initiator in n‐hexane at −78 °C. The tacticities depended on the substituents of the monomers. Isobutyl and isopropyl vinyl ethers gave highly isotactic polymers (mm = 83%), whereas tert‐butyl and n‐butyl vinyl ethers resulted in lower isotactic contents (mm ∼ 50%) similar to those for TiCl4, a conventional Lewis acid, thus indicating that the steric bulkiness of the substituents was not the critical factor in stereoregulation. A statistical analysis revealed that the high isospecificity was achieved not by the chain end but by the catalyst 1 or the counteranion derived therefrom. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1060–1066, 2001  相似文献   

14.
The effect of zinc chloride (ZnCl2) on the cationic polymerization of isobutyl vinyl ether (IBVE) initiated by carboxyl groups on a carbon black surface was investigated. Although the polymerization of IBVE was initiated by carboxyl groups on the surface, the rate of polymerization was small and the molecular weight distribution (MWD) of poly IBVE was very broad. The rate of the polymerization was found to be drastically increased, and 100% monomer conversion was achieved in a short time by the addition of ZnCl2. The number-average molecular weights (Mn) of the polyIBVE were directly proportional to monomer conversion in the polymerization initiated by the carbon black/ZnCl2 system. By addition of the monomer at the end of the first-stage polymerization, the added monomer was smoothly polymerized at the same rate as in the first stage. The Mn of the polymer was in excellent agreement with the calculated value, assuming the polyIBVE chain forms per unit carboxyl group on the surface and MWD was narrow (Mw/Mn = 1.2 ~ 1.3). Based on the results, it is concluded that carbon black/ZnCl2 system has an ability to initiate the living cationic polymerization of IBVE. Furthermore, it was found that polyIBVE was grafted onto the carbon black surface after the quenching of the living polymer with methanol. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
16.
We first achieved the living cationic polymerization of azide‐containing monomer, 2‐azidoethyl vinyl ether (AzVE), with SnCl4 as a catalyst (activator) in conjunction with the HCl adduct of a vinyl ether [H‐CH2CH(OR)‐Cl; R ? CH2CH2Cl, CH2CH(CH3)2]. Despite the potentially poisoning azide group, the produced polymers possessed controlled molecular weights and fairly narrow distributions (Mw/Mn ~ 1.2) and gave block polymers with 2‐chloroethyl vinyl ether. The pendent azide groups are easily converted into various functional groups via mild and selective reactions, such as the Staudinger reduction and copper‐catalyzed azide‐alkyne 1,3‐cycloaddition (CuAAC; a “click” reaction). These reactions led to quantitative pendent functionalization into primary amine (? NH2), hydroxy (? OH), and carboxyl (? COOH) groups, at room temperature and without any acidic or basic treatment. Thus, poly(AzVE) is a versatile precursor for a wide variety of functional vinyl ether polymers with well‐defined structures and molecular weights. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1449–1455, 2010  相似文献   

17.
18.
Matrix‐assisted laser desorption ionization time of flight mass spectrometry (MALDI‐TOF‐MS) was utilized for the analysis of polymers obtained by the living cationic polymerization of isobutyl vinyl ether (IBVE) with the HCl‐VE adduct/SnCl4/n‐Bu4NCl initiating system in CH2Cl2 at −78 °C. Under optimized analysis conditions, well‐resolved spectra were obtained for samples with number‐average molecular weights of ≤104 with the use of 1,8‐dihydroxy‐9(10H)‐anthracenone (dithranol) as a matrix and sodium trifluoroacetate as an added salt. The MS spectra showed only one series of peaks separated exactly by the mass of the IBVE. The observed mass of each peak was in good agreement with the theoretical one, which possesses one initiator fragment at the α end and one methoxy group originated from quenching with methanol at the ω end. Thus, detailed end group analysis is possible for poly(VE). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4023–4031, 2000  相似文献   

19.
The living cationic polymerization of 5‐ethyl‐2‐methyl‐5‐(vinyloxymethyl)‐1,3‐dioxane ( 1 ), a vinyl ether with a cyclic acetal unit, was investigated with various initiating systems in toluene or methylene chloride at 0 to ?30 °C. With initiating systems such as hydrogen chloride (HCl)/zinc chloride (ZnCl2), isobutyl vinyl ether–acetic acid adduct [CH3CH(OiBu)OCOCH3]/tin tetrabromide (SnBr4)/di‐tert‐butylpyridine (DTBP), and CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride (Et1.5AlCl1.5)/ethyl acetate (CH3COOEt), the number‐average molecular weights (Mn's) of the obtained poly( 1 )s increased in direct proportion to the monomer conversion and produced polymers with relatively narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.2–1.3]. To investigate the living nature of the polymerization with CH3CH(OiBu)OCOCH3/SnBr4/DTBP, a second monomer feed was added to the almost polymerized reaction mixture. The added monomer was completely consumed, and the Mn values of the polymers showed a direct increase against the conversion of the added monomer, indicating the formation of a long‐lived propagating species. The glass transition temperature and thermal decomposition temperature of poly( 1 ) (e.g., Mn = 13,600, Mw/Mn = 1.30) were 29 and 308 °C, respectively. The cyclic acetal group in the pendants of the polymer of 1 could be converted to the corresponding two hydroxy groups in a 65% yield by an acid‐catalyzed hydrolysis reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4855–4866, 2007  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号