首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The equilibrium geometries, electronic and vibrational properties, and static polarizability of B24, B, and B clusters are reported here. First‐principles calculations based on density functional theory predict the staggered double‐ring configuration to be the ground state for B24, B, and B, in contrast to the quasi‐planar structure observed in small neutral and ionized Bn clusters with n ≤ 15. Furthermore, the (4 × B6) tubular structure is found to be relatively stable in comparison to the 3D cage structure. The presence of delocalized π and multicentered σ bonds appears to be the cause of the stability of the double‐ring and tubular isomers. For the ground state of B24, the lower and upper bound of the electron affinity is 2.67 and 2.81 eV, respectively, and the vertical ionization potential is 6.88 eV. Analysis of the frequency spectrum of the double‐ring and tubular isomers reveals the characteristic vibrational modes typically observed in carbon nanotubes. The corresponding IR spectrum also reflects the presence of some of these characteristic modes in the neutral and ionized B24, suggesting that double‐ring and tubular structures can be considered as the building blocks of boron nanotubes. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

2.
The structures and relative stability of the maximum‐spin n+1Aun and nAu (n = 2–8) clusters have been determined by density‐functional theory. The structure optimizations and vibrational frequency analysis are performed with the gradient‐corrections of Perdew along with his 1981 local correlation functional, combined with SBKJC effective core potential, augmented in the valence basis set by a set of f functions. We predicted the existence of a number of previously unknown isomers. The energetic and electronic properties of the small high‐spin gold clusters are strongly dependent on sizes. The high‐spin clusters tend to holding three‐dimensional geometry rather than planar form preferred in low‐spin situations. In whole high‐spin Aun (n = 2–8) neutral and cationic species, 5Au4, 2Au, and 4Au are predicted to be of high stability, which can be explained by valence bond theory. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

3.
Geometric structures, electronic properties, and stabilities of small Zrn and Zr (n = 2–10) clusters have been investigated using density functional theory with effective core potential LanL2DZ basis set. For both neutral and charged systems, several isomers and different multiplicities were studied to determine the lowest energy structures. Many most stable states with high symmetry were found for small Zrn clusters. The most stable structures and symmetries of Zr clusters are the same as the neutral ones except n = 4 and 7. We found that the clusters with n > 3 possess highly compact structures. The clusters are inclined to form the caged‐liked geometry containing pentagonal structures for n > 8, which is in favor of energy. From the formation energy and second‐order energy difference, we obtained that 2‐, 5‐, 7‐atoms of neutral and 4‐, 7‐atoms cationic clusters are the magic numbers. Furthermore, the highest occupied molecular orbital‐lowest unoccupied molecular orbital gaps display that the Zr3, Zr6, Zr, and Zr are more stable in chemical stability. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
We investigated various isomers of B6, B, and B clusters with ab initio [Hartree–Fock (HF), MP2)] and density functional theory (DFT) methods. Ten B6 isomers, 6 B isomers, and 6 B isomers are determined to be local minima on their potential energy hypersurfaces by the HF, B3LYP, B3PW91, and MP2 methods. Fourteen of these structures are first reported. The most stable neutral B6 cluster is the capped pentagonal pyramid (C5v), in agreement with the results reported previously. Hexagon B (C2h) isomer and fan‐shaped B (C2v) isomer are found to be the most stable on the cationic and anionic energy hypersurfaces, respectively. Natural bond orbital analysis suggests that there are three‐centered bonds in the most stable B6 neutral and ionic clusters. The multicentered bonds are responsible for the special stability of the lowest‐energy isomer. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 269–278, 2003  相似文献   

5.
Some newly synthesized 10B nido‐carborane derivatives, i.e., 7,8‐dicarba‐nido‐undecaborane monoanions ([7‐Me‐8‐R‐C2B9H10]K+, R = H, butyl, hexyl, octyl and decyl), have been fully characterised and examined by electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry with liquid chromatographic separation (LC/ESI‐FTICR‐MS). These boron‐containing compounds exhibit abundant molecular ions ([M]?) at m/z 140.22631 [CB9H14]?, m/z 196.28883 [CB9H22]?, m/z 224.32032 [CB9H26]?, m/z 252.35133 [CB9H30]? and m/z 280.38354 [CB9H34]? at the normal tube lens voltage setting of ?90 V, which was an instrumental parameter value selected in the tuning operation. Additional [M–nH2]? (n = 1?4) ions were observed in the mass spectra when higher tube lens voltages were applied, i.e., ?140 V. High‐resolution FTICR‐MS data revealed the accurate masses of fragment ions, bearing either an even or an odd number of electrons. Collision‐induced dissociation of the [M–nH2]? ions (n = 0–4) in the quadrupole linear ion trap (LTQ) analyzer confirmed the loss of hydrogen molecules from the molecular ions. It is suggested that the loss of H2 molecules from the alkyl chain is a consequence of the stabilization effect of the nido‐carborane charged polyhedral skeleton. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A density functional theory investigation on the geometrical and electronic properties of B4S (B2(BS)) and B5S (B(BS)) clusters has been performed in this work. Both the doublet B2(BS) ([S?B? BB? B?S]?) (D∞h, 2Πu) and the singlet B2(BS) ([S?B? B?B? B?S]2?) (D∞h, 1Σ) proved to have perfect linear ground‐state structures containing a multiply bonded BB core (BB or B?B) terminated with two BS groups, while Td B(BS) turned out to possess a perfect B? tetrahedral center directly corrected to four BS groups, similar to the corresponding boron hydride molecules of D∞h B2H, D∞h B2H, and Td BH, respectively. B4S2 and B5S4 neutrals, however, appeared to be much different: they favor a planar fan‐shaped C2v B4S2 (a di‐S‐bridged B4 rhombus) and a planar kite‐like C2v B5S4 (a di‐S‐bridged B3 triangle bonded to two BS groups), respectively. One‐electron detachment energies and symmetrical stretching vibrational frequencies are calculated for D∞h B2(BS) and Td B(BS) monoanions to facilitate their future characterizations. Neutral salts of B2(BS)2Li2 with an elusive B?B triple bond and B(BS)4Li containing a tetrahedral B? center are predicted possible to be targeted in experiments. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

7.
We have carried out a systematic study for the determination of the structure and the fundamental state of neutral and ionic small rhodium clusters [Rhn, Rh, Rh (n = 5–10)] using ab initio Hartree‐Fock methods with a LANL2DZ basis set. A range of spin multiplicities is studied for each cluster. We present the bond lengths and angles and geometric configuration adopted for the clusters in its minimum energy conformation showing the differences when the clusters have different number of unpaired electrons. In addition, we report the vertical ionization potential and the adiabatic potential calculated by the Koopman's theorem. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2541–2547, 2010  相似文献   

8.
The effects of the basis-set size on many-body energy expansion in LiF? clusters are investigated and correlated with previously reported values on LiCl? analogs. Coulomb and non-Coulomb energies in LiF? at different configurations are also examined. Although at the minimal STO -3G basis Vna(3, 4) and Vna(4, 4) nonadditivity terms were the smallest in the D3h configuration, they were the largest at the extended 6-311 ++G basis. V(m, n) terms where m = n ≥ 3 were found to be playing a small role in the chemistry and physics of LiF? clusters compared with V(3, n) terms in LiCl? clusters.  相似文献   

9.
A systematic density functional theory and wave function theory investigation on the geometrical and electronic structures of the electron‐deficient diboron aurides B2Au (n = 1, 3, 5) and their mixed analogues B2HmAu (m + n = 3, 5) has been performed in this work. Ab initio theoretical evidences strongly suggest that bridging gold atoms exist in the ground states of C2v B2Au?(1A1), C2 B2Au(1A), C2v B2Au3(2B1), C2v B2Au(1A1), and Cs B2Au5(2A″), which all prove to possess a B? Au? B three‐center‐two‐electron (3c‐2e) bond. For B2HmAu (m + n = 3, 5) mixed anions, bridging B? Au? B units appear to be favored in energy over bridging B? H? B, as demonstrated by the fact that the Au‐bridged C2v B2H2Au? (1A1), Cs B2HAu (1A′), and C1 B2HAu (1A) lie clearly lower than their H‐bridged counterparts Cs B2H2Au? (1A′), C2 B2HAu (1A), and C2v B2HAu (1A1), respectively. Orbital analyses indicate that Au 6s makes about 92–96% contribution to the Au‐based orbitals in these B‐Au‐B 3c‐2e interactions, whereas Au 5d contributes 8–4%. The adiabatic and vertical detachment energies of the concerned anions have been calculated to facilitate their future experimental characterizations. The results obtained in this work establish an interesting 3c‐2e bonding model (B? Au? B) for electron‐deficient systems in which Au 6s plays a major role with non‐negligible contribution from Au 5d. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

10.
The structure of B14, B, and B14H in octahedral symmetry has been investigated by ab initio calculations at the STO-3G and 4–31G levels. The relationship of molecular orbitals among them has been analyzed and it can be found that the number of valence bonding orbitals of high borane obeys the Wade rule. The similarities and difference between boron clusters and carbon clusters are also discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The structural properties of neutral and ionic AlnO2 (n = 1–10) clusters have been systematically investigated using the density functional method B3LYP with a standard 6‐311+G(d) basis set. The calculated results show that in the AlnO, AlnO2, and AlnO (n ≥ 3) clusters, O atoms tend to penetrate into the aluminum clusters with some Al atoms moving outward. The binding energies and natural charges populations indicate that the oxygen‐etching is generally stronger in the order Al < Aln < Al for n < 3, and Al > Aln > Al for n ≥ 3. To further understand the mechanism of interaction between Al and O2, the adsorption of O2 on the Al(111) surface was studied using the density functional theory with plane wave pseudopotential method. The calculated results are consistent with the experimental observation that the O2 molecule would dissociate on the Al(111) surface and be adsorbed in adjacent hollow sites, forming a local structure of Al3O–Al3O. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

12.
CuTb[B5O10]: The first “Metaborate” with a [B5O10]5? Anion Single crystals of the new compound CuTb[B5O10] were obtained by a B2O3 flux-technique. They crystallize in a so far unknown structure. X-ray investigations on single crystals led to the space group C–I ba2 (Nr. 45); a = 6.294(1) Å; b = 8.406(8) Å; c = 12.733(2) Å; Z = 4. The structure contains [B5O10]5? chains isolated from each other. These chains include twelf membered rings of boron and oxygen. Each ring consists of two tetrahedral BO4 and two planar B2O5 groups and is connected with the next one via the BO4 units. Tb3+ is eightfold- and Cu2+ elongated octahedraly coordinated by oxygen.  相似文献   

13.
An ab initio theoretical investigation on the geometrical and electronic structures and photoelectron spectroscopies (PES) of BAun?/0 (n = 1–4) auroboranes has been performed in this work. Density functional theory and coupled cluster method (CCSD(T)) calculations indicate that BAu (n = 1–4) clusters with n‐Au terminals possess similar geometrical structures and bonding patterns with the corresponding boron hydrides BH. The PES spectra of BAu (n = 1–4) anions have been simulated computationally to facilitate their future experimental characterizations. In this series, the Td BAu anion appears to be unique and particularly interesting: it possesses a perfect tetrahedral geometry and has the highest vertical electron detachment energy (VDE = 3.69 eV), largest HOMO‐LUMO gap (ΔEgap = 3.0 eV), and the highest first excitation energy (Eex = 2.18 eV). The possibility to use the tetrahedral BAu unit as the building block of Li+[BAu4]? ion‐pair and other [BAu4]?‐containing inorganic solids is discussed. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
Binary chalcogenide As‐Se glasses and their thin films are important for optics, computers, materials science and technological applications. To increase understanding of the properties of thin films fabricated by plasma deposition techniques, more information concerning the physics of plasma plume is needed. In this study the formation of clusters in plasma plume from different As‐Se glasses by laser desorption ionization (LDI) or laser ablation (LA) was studied by time‐of‐flight mass spectrometry (TOF MS) in positive and negative ion modes. Formation of a number of AspSeq singly charged clusters As3Se (q = 1–5), AsSe (q = 1–3), As2Se (q = 2–4), and As3Se (q = 2–5) was found from As‐Se glasses with the molar ratio As:Se in the range from 1:2 to 7:3. The stoichiometry of the AspSeq clusters was determined via isotopic envelope analysis and computer modeling. The structure of the clusters is proposed and the relationship to the structure of the parent glasses, as also suggested by Raman scattering spectra, is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Ab initio molecular orbital structures and energies of B2F4, B2Cl4, N2O4, and C2O have been calculated for both perpendicular D2d and planar D2h rotamers. The experimental trend toward greater preference for the D2d forms in going from B2F4 to B2Cl4 is reproduced. N2O4 favors the planar conformation, although the rotation barrier is overestimated at the theoretical levels used. The oxalate dianion is calculated to be more stable in the D2d conformation; the experimental planar arrangement in the solid may be due to crystal packing forces. The preferences for one conformation over another are small; analysis indicates that different effects may predominate in each case: π stabilization for B2F4, hyperconjugation for B2Cl4, lone-pair interactions for N2O4, and electrostatic repulsions for C2O.  相似文献   

16.
A series of high‐spin clusters containing Li, H, and Be in which the valence shell molecular orbitals (MOs) are occupied by a single electron has been characterized using ab initio and density functional theory (DFT) calculations. A first type (5Li2, n+1LiHn+ (n = 2–5), 8Li2H) possesses only one electron pair in the lowest MO, with bond energies of ~3 kcal/mol. In a second type, all the MOs are singly occupied, which results in highly excited species that nevertheless constitute a marked minimum on their potential energy surface (PES). Thus, it is possible to design a larger panel of structures (8LiBe, 7Li2, 8Li, 4LiH+, 6BeH, n+3LiH (n = 3, 4), n+2LiH (n = 4–6), 8Li2H, 9Li2H, 22Li3Be3 and 22Li6H), single‐electron equivalent to doublet “classical” molecules ranging from CO to C6H6. The geometrical structure is studied in relation to the valence shell single‐electron repulsion (VSEPR) theory and the electron localization function (ELF) is analyzed, revealing a striking similarity with the corresponding structure having paired electrons. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

17.
n1,3S (n = 1 ? 4) states for atomic three‐body systems are studied with the Angular Correlated Configuration Interaction method. A recently proposed angularly correlated basis set is used to construct, simultaneously and with a single diagonalization, ground and excited states wave functions which: (i) satisfy exactly Kato cusp conditions at the two‐body coalescence points; (ii) involve only linear parameters; (iii) show a fast convergency rate for the energy; and (iv) form an orthogonal set. The efficiency of the method is illustrated by the study a variety of three‐body atomic systems [m m m] with two negatively charged light particles, with diverse masses m and m, and a heavy positively charged nucleus m. The calculated ground 11S and excited n1,3S (n = 2 ? 4) state energies are compared with those given in the literature, when available. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
Ternary chalcogenide As‐S‐Se glasses, important for optics, computers, material science and technological applications, are often made by pulsed laser deposition (PLD) technology but the plasma composition formed during the process is mostly unknown. Therefore, the formation of clusters in a plasma plume from different glasses was followed by laser desorption ionization (LDI) or laser ablation (LA) time‐of‐flight mass spectrometry (TOF MS) in positive and negative ion modes. The LA of glasses of different composition leads to the formation of a number of binary AspSq, AspSer and ternary AspSqSer singly charged clusters. Series of clusters with the ratio As:chalcogen = 3:3 (As3S, As3S2Se+, As3SSe), 3:4 (As3S, As3S3Se+, As3S2Se, As3SSe, As3Se), 3:1 (As3S+, As3Se+), and 3:2 (As3S, As3SSe+, As3Se), formed from both bulk and PLD‐deposited nano‐layer glass, were detected. The stoichiometry of the AspSqSer clusters was determined via isotopic envelope analysis and computer modeling. The structure of the clusters is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
An ab initio Hartree–Fock–Slater procedure was applied to the calculation of the electronic structure of polysulfanes, H2Sn (n = 1–4) and the ions HS and S. Charge densities, overlap populations, and deprotonation energies are calculated; the latter appear well correlated with the first and second acidity constants.  相似文献   

20.
The n ionization energies I and the gas-phase basicities GB of CH3-, Cl-, or CN-substituted quinuclidines have been measured by PE and ICR spectroscopy. The dependence of the shifts ΔI and ΔGB (relative to the values of the parent molecule) allow conclusions about the charge dispersal accompanying the n ionization or the protonation of quinuclidine in the gas phase. The agreement with the results of a minimal basis set ab initio calculation is excellent. Comparison of the solution pKa values with either I or GB reveals that 2-substituted quinuclidines exhibit sizeable solvent-induced proximity effects, i.e. that the corresponding quinuclidinium ions are more acidic in solution than expected on the basis of the gas-phase basicities. This agrees with earlier results concerning 2-substituted pyridines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号