首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On the Migration of SiAs without using a Transport Agent – Experiments and Thermochemical Calculations SiAs migrates in a temperature gradient (T = 0.5 · (T1 + T2) = 850 to 1000°C) without adding a transport agent, into the cooler part of the silica ampoule. The migration rate depends on the temperature and the partial pressure of elemental arsenic in the silica tube. The migration rates were measured for various arsenic concentrations (0 ≤ n(As) ≤ 4 mmol/20 cm3) and for various mean transport temperatures (850 ≤ T le; 1000°C). In case of increasing the temperature the migration rate rises (e.g. T = 850°C, ?(exp.) = 0.006 mg/h; T = 1000°C, ?(exp.) = 0.044 mg/h). Adding arsenic (e.g. n(As) = 0.11 mmol, ?(exp.) = 0.067 mg/h; n(As) = 4.0 mmol, ?(exp.) = 0.82 mg/h), gives also the result of an increasing migration rate. Augmenting the pressure by adding argon as inert gas has only a small effect to the migration rate of SiAs. To explain the mechanism of the migration by using model calculations, the thermochemical data of the gaseous species SiAsg and SiAs3, g have to be estimated. According to model calculations an endothermic reaction like the following one is responsible for the migration of SiAs the region of the lower temperature: SiAss + 2 Asn, g = SiAs3, g (1 ≤ n ≥ 4).  相似文献   

2.
3.
Contributions on the Thermal Behaviour of Anhydrous Phosphates. IX. Synthesis and Crystal Structure of Cr6(P2O7)4. A Pyrophosphate Containing Di- and Trivalent Chromium Cr6(P2O7)4 (Cr22+Cr43+(P2O7)4) can be obtained reducing CrPO4 by phosphorus (950°C, 48 h, 100 mg iodine as mineralizer). By means of chemical transport reactions (transport agent iodine; 1050 → 950°C) the compound has been separated from its neighbour phases (Cr2P2O7, CrP3O9) and crystallized (greenish, transparent crystals; edge length up to 0.3 mm). The crystal structure of Cr6(P2O7)4 (Spcgrp.: P-1; z = 1; a = 4.7128(8) Å, b = 12.667(3) Å, c = 7.843(2) Å, α = 89.65(2)°, β = 92.02(2)°, γ = 90.37(2) has been solved and refined from single crystal data (2713 unique reflections, 194 parameter, R = 0.035). Cr2+ is surrounded by six oxygen atoms which occupy the corners of an elongated octahedron (4 × dCr? O ≈? 2.04 Å; 2 × dCr? O ≈? 2.62 Å). The Cr3+ ions are also coordinated octahedraly (1.930 Å ≤ dCr? O ≤ 2.061 Å). The crystallographically independent pyrophosphate groups show nearly eclipsed conformation. The bridging angles (P? O? P) are 136.5° and 138.9° respectively.  相似文献   

4.
The asymmetric lactone (3 S, 4 R)-3-methyl-4-benzyloxycarbonyl-2-oxetanone ( 6 ) was anionically polymerized to give an insoluble, crystalline, highly isotactic polymer with (2 S, 3 S)-benzyl β-3-methylmalate repeating units. Solubility was achieved by copolymerization of 6 with the recemic (R, S)-butyl malolactonate ( 7 ). The semicrystalline copolymer was characterized (M̄n = 107 000, Tg = 29,6°C, Tm = 161°C, [α] = 1,5 deg · dm−1 · g−1 · cm3) and its stereosequence investigated by 13C NMR.  相似文献   

5.
Gas‐Phase Equilibria of Quaternary Bismuth Selenium Oxidechlorides The existence of new compounds Bi4O4SeCl2, Bi10O12SeCl4, and Bi22O28SeCl8 in the pseudoternary area Bi2O3/Bi2Se3/BiCl3 has been established by solid state and chemical vapour transport reactions. Furthermore, heterogeneous equilibria between solid state and vapour phase have been studied by mass‐spectrometric measurements. The novel gas‐molecule BiSeCl has been detected. The results of ab initio calculations for structure and refining of thermochemistry of this molecule are given: (Bi–Se) = 2,44 Å; (Bi–Cl) = 2,49 Å; (Se–Bi–Cl) = 106,0°; Thermodynamics: δH°B,298 (BiSeClg) = 6,0 kcal/mol; S°298 (BiSeClg) = 75,8 cal/mol K; Cp (BiSeClg) = 13,583 + 0,64 · 10–3 · T – 0,41 · 105 · T–2 – 0,35 · 10–6 · T2 cal/mol K. Finally, the composition of the gaseous phase has been calculated and estimations about chemical vapour transport were carried out by thermodynamic modelling.  相似文献   

6.
Synthesis, Crystal Structure, and Properties of Copper(II) Ultraphosphate CuP4O11 CuP4O11 was synthesised from Cu2P4O12 and P4O10 (500°C, sealed silica ampoules) using iodine and a few mg of CuP2 or phosphorus as mineraliser. Chemical transport reactions in a temperature gradient 600 → 500°C led to the formation of well developed, colourless, transparent crystals with edge-lengths up to 5 mm (deposition rate m ≈? 2 mg/h). The crystal structure of copper(II) ultraphosphate (C1 ; Z = 8; a = 13.084(3) Å, b = 13.024(2) Å, c = 10.533(2) Å, α = 89.28(2)°, β = 118.42(2)°, γ = 90.30(2)°) has been determined and refined from X-ray data obtained from a pseudo-merohedrally twinned crystal (twin element two-fold rotation axis // b; volume ratio: 17/3; 3063 independent reflections with 2θ ? 53.4°; 291 variables; conventional residual (based on F) R1 = 0.038, wR2 = 0.101 (based on F2), GooF = 1.10). The crystal structure of CuP4O11 is built from four crystallographically independent ten-membered polyphosphate rings of very similar conformation. These rings are linked to form two-dimensional nets parallel (?2 0 1) planes. There is a close topological relationship between these nets and those formed in polyphosphides CdP4 and CuP2. Copper on two crystallographic sites (Cu2P8O22) is coordinated by oxygen thus forming elongated [CuO6] octahedra (deq(Cu? O) ≈? 1.96 Å; dax(Cu? O) ≈? 2.34 Å). The crystal g-tensor of CuP4O11 has been determined from powder samples to g1 = 2.09, g2 = 2.24, g3 = 2.36. These values are in good agreement with molecular g-values from calculations within the framework of the angular overlap model on the two independent CuO6 octahedra (Cu2+(1): gx = 2.09, gy = 2.10, gz = 2.52; Cu2+(2): gx = 2.08, gy = 2.11, gz = 2.52) assuming exchange coupling. The observed broad absorption band (7000 cm?1 to 13000 cm?1) from powder reflectance measurements (4000–28000 cm?1) and the bulk magnetic susceptibility of μexp = 1.99 μB is also reproduced nicely by this calculations.  相似文献   

7.
Investigations on the Crystallization of Rhodium(III) Oxo Compounds – Chemical Vapour Transport of Rh2O3 using Chlorine Rh2O3,s migrates in chemical transport experiments with chlorine as transport agent from the higher (T2) to the lower (T1) temperature of a gradient (ΔT = 100°) due to endothermal reactions (900°C < T ≤ 1050°C; T = 0,5 · (T2 + T1)). Under the conditions of transport experiments RhCl3,s is observed in most experiments as equilibrium solid besides the sesquioxide. The transport rates for Rh2O3,s and the sublimation rates for RhCl3,s grow with increasing temperature T . The composition of the equilibrium solids, the rates of migration and the sequence of deposition (1. RhCl3,s, 2. Rh2O3,s) is well reproduced by thermodynamic model calculations. As a result of this calculations the transport behaviour of the system Rh2O3,s/Cl2 is determined by the two equilibria The influence of RhCl2,g and RhCl4,g on the transport behaviour of Rh2O3,s as well as the possible occurence of RhOCl2,g in the equilibrium gas phase will be discussed. Predictions of the transport behaviour of ternary rhodium(III) oxo compounds will be made.  相似文献   

8.
The thermal decomposition in vacuum of phosphides and arsenides of silicon and germanium has been investigated using a simple set-up designed to resist the attack of the corrosive decomposition products. The phases GeP, GeAs, SiAs2 and GeAs2 disintegrate directly to the elements. X-ray amorphous intermediary products Si≈5P and Si6As are formed when SiP and SiAs are heated to 940 to 930°C, respectively. The electron diffraction pattern of Si6As is reported.  相似文献   

9.
Single pulse shock tube studies of the thermal dehydrochlorination reactions (chlorocyclopentane → cyclopentene + HCl) and (chlorocyclohexane → cyclohexene + HCl) at temperatures of 843–1021 K and pressures of 1.4–2.4 bar have been carried out using the comparative rate technique. Rate constants have been measured relative to (2‐chloropropane → propene + HCl) and the decyclization reactions of cyclohexene, 4‐methylcyclohexene, and 4‐vinylcyclohexene. Absolute rate constants have been derived using k(cyclohexene → ethene + butadiene) = 1.4 × 1015 exp(?33,500/T) s?1. These data provide a self‐consistent temperature scale of use in the comparison of chemical systems studied with different temperature standards. A combined analysis of the present results with the literature data from lower temperature static studies leads to
  • k(2‐chloropropane) = 10(13.98±0.08) exp(?26, 225 ± 130) K/T) s?1; 590–1020 K; 1–3 bar
  • k(chlorocylopentane) = 10(13.65 ± 0.10) exp(?24,570 ± 160) K/T) s?1; 590–1020 K; 1–3 bar
  • k(chlorocylohexane) = 10(14.33 ± 0.10) exp(?25,950 ± 180) K/T) s?1; 590–1020 K; 1–3 bar
Including systematic uncertainties, expanded standard uncertainties are estimated to be about 15% near 600 K rising to about 25% at 1000 K. At 2 bar and 1000 K, the reactions are only slightly under their high‐pressure limits, but falloff effects rapidly become significant at higher temperatures. On the basis of computational studies and Rice–Ramsperger–Kassel–Marcus (RRKM)/Master Equation modeling of these and reference dehydrochlorination reactions, reported in more detail in an accompanying article, the following high‐pressure limits have been derived:
  • k (2‐chloropropane) = 5.74 × 109T1.37 exp(?25,680/T) s?1; 600–1600 K
  • k (chlorocylopentane) = 7.65 × 107T1.75 exp(?23,320/T) s?1; 600–1600 K
  • k (chlorocylohexane) = 8.25 × 109T1.34 exp(?25,010/T) s?1; 600–1600 K
© 2011 Wiley Periodicals, Inc.
  • 1 This article is a U.S. Government work and, as such, is in the public domain of the United States of America.
  • Int J Chem Kinet 44: 351–368, 2012  相似文献   

    10.
    Contributions on the Thermal Behaviour of Sulphates. XVI. The Chemical Vapour Transport of Ga2(SO4)3 with Cl2 and HCl. Experimental Results and Calculations Crystals of anhydrous Ga2(SO4)3 can be grown by means of CVT (e. g. 525°C → 475°C) in the less hot region of a closed silica ampoule. We investigated the dependance of the deposition rate on the concentration of the transport agent (Cl2, HCl) and the transport temperature (475°C ≤ T ≤ 750°C; T2 > T1; ΔT = 50°C; T = 0.5(T1 + T2)). Experimental results and thermodynamic calculations on the basis of ΔFH 298 º (Ga2(SO4)3) = ?686.5 kcal/mol show a good agreement.  相似文献   

    11.
    On the Chemical Vapour Transport of Chromium and Manganese Monophosphide. Experimental Results and Thermochemical Calculations Using iodine as transport agent well shaped crystals of a volume up to V ≈︁ 50 mm3 (CrP) or an edgelength of approximately 1 ≈︁ 10 mm (MnP) can be grown. CrP has been deposited at the lower temperature of a temperature gradient (1050 → 950°C). At a density of the transport agent higher than D = 26 · 10−6 [mol I2/cm3] CrP and CrI2,1 coexist in the deposition region at the lower temperature. The determined composition of the condensed phases under equilibrium conditions are in accordance with thermochemical calculations assuming the heat of formation of CrP to be ΔFH= −25.5 ± 2 [kcal/mol]. Furthermore these calculations show that the solution of CrP in the gas phase leads to CrI2,g, Cr2I4,g, P2,g and P4,g, while I2,g, HIg, PI3,g and P2I4,g have to be considered as transport agents. The migration of MnP (1000 → 1100°C) results from an exothermic reaction. MnPs exists besides MnI2,1 in the source region. Thermochemical calculations are in good agreement with the experimental results and suggest the following heterogenous equilibrium to be responsible for the observed behaviour: .  相似文献   

    12.
    On the Chemical Transport of Cr2O3 with Cl2 and with HgCl2 — Experiments and Model Calculations The migration of Cr2O3 in a temperature gradient (1 000°C → 900°C) in the presence of low concentrations of chlorine and water (from the wall of silica ampoules) is a result from the endothermic reactions (1) Cr2O3,s + H2Og + 3 Cl2,g = 2 CrO2Cl2,g + 2 HClg (2) Cr2O3,s + 1/2 O2,g + 2 Cl2,g = 2 CrO2Cl2,g With higher concentrations of chlorine, the transport reaction is (3) Cr2O3,s + 5/2 Cl2,g = 3/2 CrO2Cl2,g + 1/2 CrCl4,g The gas phase of the transport system Cr2O3/Cl2 can be reduced step by step by adding small amounts of chromium, so that CrCl3 and finally also CrCl2 become more important. Further, at a lower ratio n°(Cl)/n°(Cr) three transport reactions have to be taken into consideration; with the participation of CrOCl2,g (5). (4) Cr2O3,s + 9/2 CrCl4,g = 3/2 CrO2Cl2,g + 5 CrCl3,g (5) Cr2O3,s + 3 CrCl4,g = 3 CrOCl2,g + 2 CrCl3,g (6) Cr2O3,s + H2,g + 4 HClg = 2 CrCl2,g + 3 H2Og The reactions (1), (2) and (6) become possible through the cooperation of two transport agents at a time. The migration of Cr2O3 with HgCl2 can also be described with reactions (1) – (3). The decomposition of HgCl2 Produces the small chlorine pressure for the transport reaction. The oxidation potential of the transport agent HgCl2 is too low for the oxidation of CrIII to CrVI.  相似文献   

    13.
    Synthesis and Crystal Structure of Sodium Tetraoxo Nitrido Tungstate(VI), Na5WO4N Colourless crystals of Na5WO4N are obtained besides Na4WO2N2 [1] by the reaction of WO3 with NaNH2 (15:1) at 350°C ≥ T ≥ 750°C in autoclaves to prevent early decomposition of sodium amide. X-ray single crystal investigations are characterized by the following data:
    • Na5WO4N: Cmc21 (No. 36), Z = 4
    • a = 9.873(2) Å, b = 5.769(1) Å, c = 10.648(2) Å
    • Z(F)≥ 3σ(F) = 2182, Z(Var.) = 55, R/Rw = 0.029/0.039
    The structure contains the tetragonal pyramidal ion WO4N5? with nitrogen at the apex connected via Na+ ions irregularly coordinated by one nitrogen and four oxygen atoms of different anions.  相似文献   

    14.
    SiAs has been prepared by chemical transport using silicon, arsenic and iodine, and GeAs by reaction of gaseous arsenic on germanium in a temperature gradient.Chemical analysis and X-ray diffraction have been performed to characterize these compounds and especially to distinguish GeAs from GeAs2 which also appears during the GeAs preparation. GeAs and SiAs have been shown to be quite stable up to 500°C and 700°C, respectively. The evaporation of GeAs becomes important above 650°C according to the three equilibria
    In the same way the evaporation of SiAs becomes important above 900°C and can be written
      相似文献   

    15.
    X-Ray Single Crystal and Electron Microscopic Investigations on a New Uranium Niobate: γ-UNbO5 Black cuboid formed crystals of γ-UNbO5 were obtained (at T1) by chemical transport in a temperature gradient (T2 → T1; 1000 °C → 980 °C) using UNb2O7 as starting material (at T2) and a combination of NbCl5 and Cl2 as transport agent. They were examined by X-rays and electron microscopy. The new modification of γ-UNbO5 crystallizes orthorhombically (space group Pmma) with a = 7.492(3) Å, b = 4.124(4) Å and c = 6.434(4) Å. The compound is isostructural to UVO5 and UMoO5. The crystal structure shows parallel layers formed by edge sharing UO7 and NbO6 polyhedra. Polyhedra of neighbouring layers (distance = b) are mutually corner linked.  相似文献   

    16.
    On the Chemical Transport of Tungsten using HgBr2 – Experiments and Thermochemical Calculations Using HgBr2 as transport agent tungsten migrates in a temperature gradient from the region of higher temperature to the lower temperature (e.g. 1 000 → 900°C). The transport rates were measured for various transport agent concentrations (0.64 ? C(HgBr2) ? 11.74 mg/cm3; T? = 950°C) and for various mean transport temperatures (800 ? T? ? 1 040°C). Under these conditions tungsten crystals were observed in the sink region. To observe the influence of tungsten dioxide (contamination of the tungsten powder) on the transport behaviour of tungsten, experiments with W/WO2 as starting materials were performed. According to model calculations the following endothermic reactions are important for the migration of tungsten: In the presence of H2O or WO2 other equilibria play a role, too. Using a special “transport balance” we observed a delay of deposition of tungsten (e.g. T? = 800°C; 15 h delay of deposition) with W and W/WO2 as starting materials. The heterogeneous and homogeneous equilibria will be discussed and an explanation for the non equilibrium transport behaviour of tungsten will be given.  相似文献   

    17.
    The nano-ZnCr2O4 spinel oxides was synthesized by a ethylene glycol mediated solvothermal method. Catalytic combustion of methane test showed that an excellent activity over nano-ZnCr2O4 with T10% = 300 °C and T90% = 400 °C. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption measurements (BET) indicated that a uniform nano-ZnCr2O4 spinel oxides particles with the high surface area (96.2 m2g−1) was successfully synthesized. Oxygen temperature programmed desorption (O2-TPD) profile revealed there were two obvious desorption of oxygen species from nano-ZnCr2O4 in the range of 300–400 °C and 500–700 °C. It was clear that the desorption temperature range of the first oxygen species coincided with the methane catalytic combustion temperature. X-ray photoelectron spectroscopy (XPS) analysis exhibited that Cr6+ was present in the lattice of ZnCr2O4 apart from Cr3+. High valence cations of chromium in crystal lattice probable caused the presence of interstitial oxygen species in the structure to maintain the electroneutrality. Additionally, Raman spectra proved that there is the interstitial oxygen species in the crystal lattice of ZnCr2O4. Therefore, the excellent catalytic activity for methane combustion was contributed to the flexible interstitial oxygen in the ZnCr2O4.  相似文献   

    18.
    A commercial Polystyrene (Mw = 2.5 105, MFI =14.80) was extruded repeatedly from one to eight times at 190 °C. The effects of extrusion process on physical and chemical properties of polystyrene were investigated using: -Average molecular weight
    • —Izod Impact strength;
    • —Thermal properties (TGA, DTA).
    The results showed that processing of polystyrene leads to degradation. In fact, a decrease of 23% in the average molecular weight was observed for the 8th cycle sample and a reduction in impact strength by 34% was also noticed for the 4th cycle sample.  相似文献   

    19.
    The self‐assembly of NiCl2·6H2O with a diaminodiamide ligand 4,8‐diazaundecanediamide (L‐2,3,2) gave a [Ni(C9H20N4O2)(Cl)(H2O)] Cl·2H2O ( 1 ). The structure of 1 was characterized by single‐crystal X‐ray diffraction analysis. Structural data for 1 indicate that the Ni(II) is coordinated to two tertiary N atoms, two O atoms, one water and one chloride in a distorted octahedral geometry. Crystal data for 1: orthorhombic, space group P 21nb, a = 9.5796(3) Å, b = 12.3463(4) Å, c = 14.6305(5) Å, Z = 4. Through NH···Cl–Ni (H···Cl 2.42 Å, N···Cl 3.24 Å, NH···Cl 158°) and OH···Cl–Ni contacts (H···Cl 2.36 Å, O···Cl 3.08 Å, OH···Cl 143°), each cationic moiety [Ni(C9H20N4O2) (Cl)(H2O)]+ in 1 is linked to neighboring ones, producing a charged hydrogen‐bonded 1D chainlike structure. Thermogrametric analysis of compound 1 is consistent with the crystallographic observations. The electronic absorption spectrum of Ni(L‐2,3,2)2+ in aqueous solution shows four absorption bands, which are assigned to the 3A2g3T2g, 3T2g1Eg, 3T2g3T1g, and 3A2g3T1g transitions of triplet‐ground state, distorted octahedral nickel(II) complex. The cyclic volammetric measurement shows that Ni2+ is more easily reduced than Ni(L‐2,3,2)2+ in aqueous solution.  相似文献   

    20.
    Fe? Al-Isomorphism and Structural Water in Crystals of Jarosite-Alunite-Type The isomorphous relation between synthetic Alunite KAl3(OH)6(SO4)2 and Jarosite KFe3(OH)6(SO4)2 is investigated. Chemical analysis, X-ray diffraction and thermal analysis permit to draw conclusions on the stoichiometry of the solid solution. It can be shown that under the chosen synthesis conditions the following results are obtainable:
    • Iron is preferably built in the crystal lattice of the solid solution.
    • There are vacancies on the octahedral positions of aluminium or iron.
    • There is always an excess of water in the structure.
    Because of the lacking Fe3+/Al3+ charges it seems possible that a partial OH?? H2O substitution exists in the structure.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号