首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ternary Halides of the A3MX6 Type. III [1, 2]. Synthesis, Structures, and Ionic Conductivity of the Halides Na3MX6 (X = Cl, Br) The bromides Na3MBr6 crystallize with the stuffed LiSbF6-type structure (type I; M = Sm? Gd) or with the structure of the mineral cryolite (type II; M = Gd? Lu). The structure types were refined from single crystal X-ray data (Na3SmBr6: trigonal, space group R3 , a = 740.8(2) pm, c = 1 998.9(8) pm, Z = 3; Na3YBr6: monoclinic, space group P21/n, a = 721.3(4) pm, b = 769.9(2) pm, c = 1 074.8(4) pm, β = 90.60(4)°, Z = 2). Reversible phase transitions from one structure to the other occur. The phase transition temperatures were determined for the bromides as well as for the chlorides Na3MCl6 (M = Eu? Lu). The refinement of both structures for one compound was possible for Na3GdBr6 (I: trigonal, space group R3 , a = 737.1(5) pm, c = 1 887(2) pm, Z = 3; II: monoclinic, space group P21/n, a = 725.2(1) pm, b = 774.1(3) pm, c = 1 080.1(3) pm, β = 90.76(3)°, Z = 2). All compounds exhibit ionic conductivity of the sodium ions which decreases with the change from type I to type II. The conductivity of the bromides is always higher when compared with the respective chlorides.  相似文献   

2.
The Crystal Structures of ErSeI and NaErSe2 It is reported about attempts to synthesize lanthanoide selenidehalides of the formula LnSeX (X ? Cl, Br, I) exemplary for Ln ? Er. The relative stabilities of these compounds are discussed. X-ray crystal structure analysis revealed for the compounds ErSeBr and ErSeI the FeOCl-structure type (space group Pmmn, Z = 2, a = 406.3(5) pm, b = 559.2(6) pm, and c = 795(1) pm, and a = 418.26(6) pm, b = 558.4(1) pm, and c = 889.0(2) pm, respectively). A corresponding chloride was not found within the scope of this investigation. From the educts Er2Se3 and ErCl3 in the presence of NaCl as flux in Nb-ampoules the compound NaErSe2 was formed instead which crystallizes in an α-NaFeO2-type structure (space group R3 m, Z = 3, a = 408.41(2) pm and c = 2067.4(2) pm).  相似文献   

3.
Single Crystal Structure Determinations of the Cubic High Pressure Elpasolites Rb2LiFeF6 and Cs2NaFeF6: Pressure-Distance Paradox without Change of Coordination Number At single crystals of metastable high pressure phases of Rb2LiFeF6 (a = 824.4 pm) and Cs2NaFeF6 (a = 873,9 pm) the parameters of the cubic elpasolite structure (Fm3 m, Z = 4) were determined by X-ray methods. Compared to the 12L-structures of the normal pressure phases (R3 m, hex. Z = 6) only the distances within the 12-coordination, Rb? F = 291.7 resp. Cs? F = 309.9 pm, are compressed by 2–3%. However, the octahedral distances Fe? F = 194.6 pm and Li? F = 217.6 pm resp. Fe? F = 194.9 pm and Na? F = 242.0 pm, are enlarged by 1–4%, though there was no increase in coordination number. This paradoxical behaviour is discussed. Difference Fourier syntheses reveal disorder only for the lithium positions in Rb2LiFeF6, which are 30 pm off-center, corresponding to a splitting of distances Li? F into 188, 247 and 4 × 220 pm.  相似文献   

4.
LiSr2[ReN4] and LiBa2[ReN4] – isotypic Nitridorhenates(VII) The quaternary nitridorhenates(VII) LiAE2[ReN4] (AE = Sr, Ba) were synthesized by reaction of the metals with molecular nitrogen at 850–900 °C. The plate‐like, nearly colourless crystals were investigated by X‐ray single crystal methods and were identified as isotypic phases: LiSr2[ReN4] (LiBa2[ReN4]); monoclinic, P21/m; a = 614.64(8) pm (651.04(12) pm), b = 585.97(6) pm (b = 598.86(9) pm), c = 689.70(17) pm (737.43(5) pm), β = 106.375(4)° (108.535(2)°); Z = 2. Crystals of the strontium compound were systematically twinned along [001]. In the crystal structures of the quaternary compounds the alkaline earth‐ and nitride‐ ions are arranged in the motif of the InNi2‐type structure. Strontium and barium are in a trigonal prismatic coordination by nitrogen (Sr–N: 261.0(7)–284.3(4) pm; Ba–N: 278.0(7)–303.0(6) pm). One half of the tetrahedral voids within the partial structure formed by stacking of trigonal prismatic rod layers is occupied by rhenium (formation of [ReVIIN4]5–‐tetrahedra; Re–N: 181.0(6)–184.5(8) pm), lithium takes the positions of the remaining tetrahedral sites (Li–N: 2 × 198(1) pm, 224(2) pm and 228(2) pm for the strontium phase). In the barium compound the lithium positions show a larger shift from the tetrahedral centres towards a tetrahedral plane (Li–N: 2 × 195(1) pm, 213(2) pm and 304(2) pm).  相似文献   

5.
Sr5[NbN4]N (transparent, red single crystals) was synthesized by reaction of Sr2N with Nb under nitrogen at ambient pressure and 1223 K. The crystal structure was solved and refined in the space group Pbcm (no. 57), Z = 4, with lattice constants a = 646.6(3) pm, b = 1792.5(9) pm, c = 729.8(4) pm, and R = 0.019, wR2 = 0.034. The crystal structure contains both isolated tetrahedra [NbN4]7‐ as well as chains of corner sharing octahedra 1(Sr4Sr2/2N7+). Strontium is irregularly coordinated by nitrogen (CN = 4 ‐ 6, Sr‐N: 252.3(4) ‐ 340.8(3) pm); nitrogen is located in a distorted octahedral environment by strontium and niobium (Nb‐N: 194.5(4) ‐ 199.2(2) pm). By formal reduction of the structural building units to their centers a close structural relationship to both the NiAs and the CaSi type structure is evident.  相似文献   

6.
The Copper Iridium Boride Cu2Ir4B3 with a Layer Structure Derived from the ZnIr4B3 Type The new compound Cu2Ir4B3 (orthorhombic, Cmcm, a = 283.21(2) pm, b = 2540.6(1) pm, c = 281.06(2) pm, Z = 2, 209 reflexions, 18 parameters, R = 0.043) was prepared by reaction of the elements. The structure is related to the ZnIr4B3 type. It contains slabs composed of Ir6B‐ und Ir6‐prisms which alternate with copper double layers.  相似文献   

7.
BiGaIn2S6 – Synthesis, Structure, and Properties The novel compound BiGaIn2S6 was obtained in the quaternary system Bi–Ga–In–S. BiGaIn2S6 forms red transparent platelets and exhibits a range of homogeneity between BiGa1In2S6 and BiGa0.8In2.2S6. The compound is a semiconductor with Eg(opt.) = 1.9 eV. – BiGaIn2S6 crystallizes monoclinically forming a new structure type (a = 1112.0 pm, b = 380.6 pm, c = 1228.0 pm, β = 116.30°, Z = 2, space group P21/m, no. 11). The S atoms form strongly corrugated 2 D fragments of the (hc)2 sphere packing type. The In atoms occupy octahedral holes (d(In–S) = 262 pm) and the Ga atoms tetrahedral holes (d(Ga–S) = 234 pm) inside the 2 D-layers. The Bi atoms on the top of trigonal BiS3 pyramids (d(Bi–S) = 265 pm) are at the periphery of the layers and have four additional S ligands from the neigbouring layer at much larger distances (d(Bi–S) = 319 pm). – The bonding of a BiIII sulfide is analyzed for the first time by the Electron Localization Function (ELF).  相似文献   

8.
The Reaction of SeCl4 with Transition Metal Tetrachlorides. Synthesis and Crystal Structures of (SeCl3)2MCl6 with M = Zr, Hf, Mo, Re The transition metal tetrachlorides ZrCl4, HfCl4 and MoCl4 react with SeCl4 in closed ampoules at temperatures of 140°C to (SeCl3)2MCl6 (M = Zr, Hf, Mo) which are all isotypic and crystallize in the (SeCl3)2ReCl6 structure type (orthorhombic, Fdd2, Z = 8, lattice constants for M = Zr: a = 1165.7(1)pm, b = 1287.2(2)pm, c = 2180.2(2)pm; for M = Hf: a = 1162.9(2)pm, b = 1285.0(2)pm, c = 2178.2(3)pm; for M = Mo: a = 1153.8(1)pm, b = 1267.7(1)pm, c = 2147.4(2)pm). The Cl? ions form a hexagonal closest packing with one fourth of the octahedral holes filled by Se4+ and M4+ in an ordered way. The MCl6 octahedra are regular, the SeCl6 octahedra are distorted with 3 short and 3 long Se? Cl bonds (mean 215 pm and 287 pm). The structures can thus be regarded as built of SeCl3+ and MCl62? ions. Magnetic susceptibility measurements show for M = Zr the expected diamagnetic behavior, for M = Mo and Re paramagnetic behavior according to the Curie-Weiss law with magnetic moments of 2.5 B. M. for M = Mo and 3.7 B. M. for M = Re corresponding to 2 and 3 unpaired electrons respectivly.  相似文献   

9.
Quaternary Chlorides of Divalent Europium and Trivalent Transition Metal Ions: Synthesis and Crystal Structure of Na6Eu3M4Cl24 (M = Ti, V, Cr) The reaction of EuCl2, NaCl and MCl3 (M = Ti, V, Cr) yields the chlorides Na6Eu3M4Cl24. According to X‐ray single crystal investigations, their crystal structure is a variant of the monoclinic cryolite‐type structure. One crystallographic site is occupied by Na1 and Eu simultaneously. For charge compensation the Na2 site is not fully occupied. In Na6Eu3Ti4Cl24 (P21/n, Z = 1/2, a = 663.8(1) pm, b = 718.3(1) pm, c = 953.3(2) pm, β = 91.55(2)°, Rall = 0.0314), Na6Eu3V4Cl24 (P21/n, Z = 1/2, a = 660.4(1) pm, b = 715.8(1) pm, c = 946.5(2) pm, β = 91.41(2)°, Rall = 0.0313) and Na6Eu3Cr4Cl24 (P21/n, Z = 1/2, a = 654.8(1) pm, b = 706.5(1) pm, c = 945.4(2) pm, β = 91.07(2)°, Rall = 0.0368) the ratio of Na1 : Eu amounts to 5 : 3. The colours of the compounds, orange yellow for M = Ti, orange red for M = V and dark red for M = Cr, indicate electronic interactions between Eu2+ and M3+.  相似文献   

10.
The title compounds were prepared by reaction of the elemental components. Of these Sc5Bi3 is a new compound. Its orthorhombic β‐Yb5Sb3 type crystal structure was determined from single‐crystal X‐ray data: Pnma, a = 1124.4(1) pm, b = 888.6(1) pm, c = 777.2(1) pm, R = 0.024 for 1140 structure factors and 44 variable parameters. For the other compounds we have established the crystal structures. ZrBi has ZrSb type structure with a noticeable homogeneity range. This structure type was also found for the low temperature (α) form of HfSb and for HfBi. For α‐HfSb this structure was refined from single‐crystal X‐ray data: Cmcm, a = 377.07(4) pm, b = 1034.7(1) pm, c = 1388.7(1) pm, R = 0.043 for 432 F values and 22 variables. HfBi2 has TiAs2 type structure: Pnnm, a = 1014.2(2) pm, b = 1563.9(3) pm, c = 396.7(1) pm. The structure was refined from single‐crystal data to a residual of R = 0.074 for 1038 F values and 40 variables. In addition, a zirconium bismuthide, possibly stabilized by light impurity elements X and crystallizing with the hexagonal Mo5Si3C1–x type structure, was observed: Zr5Bi3X1–x, a = 873.51(6) pm, c = 599.08(5) pm. The positions of the heavy atoms of this structure were refined from X‐ray powder film data. Various aspects of impurity stabilization of intermetallics are discussed.  相似文献   

11.
On the A2?2xSn5+xCl12 (A = K, In) Phases The refinement of the structure of A2-2xSn5+xCl12 compounds (A = K+, In+) with single crystal data is reported. They crystallize with the Th7S12 type arrangement (a = 1192(2) pm, c = 428.9(8) pm (K-compound); a = 1189.8(6) pm, c = 431.2(3) pm (In-compound)) for which we propose the space group P6 . The possibility of meroedric twinning is discussed. Due to the composition of these compounds the structure is necessarily disordered and this leads to a wide range of homogeneity which can be influenced by the size and the polarity of the A type cation.  相似文献   

12.
Crystal Structure of Tl4Fe(CN)6 Single crystals of Tl4Fe(CN)6 have been prepared for the first time and its crystal structure was determined. The pale yellow compound crystallizes in the triclinic space group P1 (No. 2) with the lattice parameters a = 726.6(1) pm, b = 797.4(8) pm, c = 1 336.0(1) pm, α = 104.7(9)°, β = 90.0(8)°, γ = 97.6(7)°, Z = 2 in a new structure type.  相似文献   

13.
Crystal Structure of Ph3PNBr · Br2 Ph3PNBr · Br2 ( 1 ) has been prepared besides of other products from the reaction of Ph3PNH with bromine, forming orange‐yellow single crystals which are characterized by IR‐spectroscopy and by a crystal structure determination. Space group P21/n, Z = 4, lattice dimensions at 20 °C: a = 916.76(10), b = 1351.42(8), c = 1494.9(2) pm, β = 96.191(5)°, R1 = 0.0538. 1 has a molecular structure in which the Br2 molecule is coordinated at the nitrogen atom of the N‐bromine‐phosphoraneimine Ph3PNBr in a linear arrangement N–Br–Br with bond lengths N–Br of 224.5(6) pm and Br–Br of 248.4(1) pm. The nitrogen atom of 1 is ψ‐tetrahedrally coordinated in addition by the phosphorus atom with a P–N distance of 165.3(6) pm and by the covalently bonded bromine atom with a bond length of 188.9(6) pm.  相似文献   

14.
The Tin Rhodium Borides SnRh3B1–x, Sn4Rh6B, and Sn5Rh6B2 The new compounds SnRh3B1–x (x ~ 0.2, tetragonal, P4/mbm, a = 570.31(2) pm, c = 835.99(8) pm, Z = 4, 514 reflexions, 26 parameters, R = 0.026), Sn4Rh6B (hexagonal, P63/mmc, a = 560.01(3) pm, c = 1367.5(1) pm, Z = 2, 746 reflexions, 17 parameters, R = 0.035), and Sn5Rh6B2 (hexagonal, P6 2m, a = 654.80(7) pm, c = 557.32(9) pm, Z = 1, 361 reflexions, 16 parameters, R = 0.039) were prepared by reaction of the elements. SnRh3B1–x crystallizes with the filled U3Si type of structure, a distortion variant of the cubic perovskite; the structure of Sn4Rh6B may be derived from the hexagonal perovskite BaNiO3. Both compounds contain nearly regular Rh6B-octahedra. Sn5Rh6B2 with the Sn5Ir6B2 type of structure contains isolated colums composed of trigonal Rh6B-prisms.  相似文献   

15.
Chloroantimonates(III): Crystal Structure of 4,4′-Dipyridylium Pentachloroantimonate, (C10H8N2H2)SbCl5 (C10H8N2H2)SbCl5 crystallizes in the triclinic space group P1 with a= 843.1(5), b = 958.6(8), c = 1098.0(10) pm, α = 112.45(6), β = 101.95(6), γ = 97.78(6)° and Z = 2. The structure is built up of 4,4 °-dipyridylium cations and pentachloroantimonate anions. The Sb atoms are distorted octahedrally coordinated. Mean distances are Sb? Cl = 242 pm (1×), Sb? Cl = 255 pm (2×), Sb ? Cl = 275 pm (2×) and Sb…?Cl.= 319 pm (1× ). The anions build up dimers.  相似文献   

16.
On the Crystal Structures of the Cyano Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O, and [Cu(en)2][Ni(CN)4] Of the three title compounds X‐ray structure determinations were performed with single crystals. [Co(NH3)6][Fe(CN)6] (a = 1098.6(6), c = 1084.6(6) pm, R3, Z = 3) crystallizes with the CsCl‐like [Co(NH3)6][Co(CN)6] type structure. [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O (a = 805.7(5), b = 855.7(5), c = 1205.3(7) pm, α = 86.32(3), β = 100.13(3), γ = 90.54(3)°, P1, Z = 1) exhibits a related cation lattice, the one cavity of which is occupied by one anion and 2 H2O, whereas the other contains two anions parallel to each other with distance Ni…Ni: 423,3 pm. For [Cu(en)2][Ni(CN)4] (a = 650.5(3), b = 729.0(3), c = 796.5(4) pm, α = 106.67(2), β = 91.46(3), γ = 106.96(2)°, P1, Z = 1) the results of a structure determination published earlier have been confirmed. The compound is weakly paramagnetic and obeys the Curie‐Weiss law in the range T < 100 K. The distances within the complex ions of the compounds investigated (Co–N: 195.7 and 196.4 pm, Ni–C: 186.4 and 186.9 pm, resp.) and their hydrogen bridge relations are discussed.  相似文献   

17.
Crystals of ordered Ba6EuF12Cl2 were found to form during high temperature flux growth. The structure was refined in the hexagonal space group P 6 to RF(R ) = 0.024(0.024) for 326 reflections and 46 parameters. Lattice parameters are a = b = 1059.27(8) pm and c = 416.36(2) pm; Z = 1. The structure is isotypic to Ba7F12Cl2. No solid solution of Ba/Eu was observed, the Eu2+ ions are located in the channels formed by 3 + 6 fluorine ions, occupying only one of the three metal sites of the Ba7F12Cl2 structure.  相似文献   

18.
A new (β‐)modification of the mercury molybdate Hg2Mo2O7, thermodynamically stable at temperatures above 390 ± 10 °C, was prepared by solid state reaction of HgO with MoO2 in sealed silica tubes. Its crystal structure, determined from single‐crystal X‐ray data, has a very pronounced subcell: space group P2/c, a = 600.9(1) pm, b = 388.7(1) pm, c = 1428.4(2) pm, β = 105.88(1)°, Z = 2, R = 0.052 for 797 structure factors and 52 variable parameters. In the superstructure of this high‐temperature β‐modification the a and the b axes of the subcell are doubled: C2/c, a = 1201.9(2) pm, b = 777.3(1) pm, c = 1428.4(2) pm, β = 105.88(1)°, Z = 8, R = 0.040 for 1490 F values and 110 variables. Like the previously reported low‐temperature α‐modification, the β‐modification consists of two‐dimensionally infinite sheets of edge‐ and corner‐sharing MoO6 octahedra. These sheets are linked by Hg2 pairs. Thus, the structures of the two modifications (α and β) differ essentially only in the orientation of the Hg2 pairs, which are located between the sheets of the MoO6 octahedra. The superstructure of the β‐modification differs from the subcell‐structure by the puckering of the sheets of MoO6 octahedra. A hypothetical displacive phase transition between the subcell‐structure (corresponding to the potential high‐temperature structure) and the superstructure of β‐Hg2Mo2O7 is discussed.  相似文献   

19.
Crystal Structure of Dodecamethyl-hexasila-tetraphospha-adamantane (Sime2)6P4 Dodecamethyl-hexasila-tetraphospha-adamantane (Sime2)6P4 crystallizes in the cubic space group I 4 3m with a = 1081.7 pm and Z = 2 formula units. The bond lengths are P? Si = 224.9 pm, C? Si = 186.4 pm and C? H = 87 pm. The bond angles at the P-atoms are 104.4° and at the Si-atoms 118.8°. – The structure of the isotypic compound (Geme2)6P4 was refined.  相似文献   

20.
La6(BN3)O6, a Nitridoborate Oxide of Lanthanum Single‐crystals of La6(BN3)O6 were formed in reactions of Li3BN2, Li3N, and LaOCl at 950 °C. The structure was solved by single‐crystal X‐ray diffraction. La6(BN3)O6crystallizes with the space group Cmcm (no. 63) containing Z = 4 formula units in the unit cell, with lattice parameters of a = 366.88(3) pm, b = 2509.2(3) pm, and c = 1101.1(1) pm (R1 = 0.054, wR2 = 0.065 for all collected symmetry independant reflections). The crystal structure reflects typical patterns obtained in structures of nitridoborates. Tri‐nitridoborate ions are coordinated by La3+ ions in a tricapped trigonal prismatic arrangement, being stacked via shared trigonal faces to form columns. The arrangement of the columns in the structure provides space for O2— ions with CN = 4, 5, and 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号