首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A novel oxazoline-functional methacrylate was prepared and employed as comonomer to produce nonaqueous dispersions of oxazoline-functional polymer particles. In nonaqueous free radical dispersion copolymerization of methylmethacrylate in the presence of oxazoline-functional methacrylate, ethyleneglycoldimethacrylate crosslinking agent, AIBN initiator, and polystyrene-block-poly(ethene-alt-propene) dispersing agent, the average polymer particle size, varying between 100 and 500 nm, was controlled by the dispersing agent contents. According to titration with HClO4 all oxazoline groups regardless of their location at particle surface or bulk, were accessible. Glass transition temperature decreased from 120 to 0°C when oxazoline functional methacrylate was increased from 0 to 95 mol %. As imaged by atomic force microscopy incorporation of the new oxazoline-functional methacrylate improved film formation. Oxazoline-functional polymer particles were easy to redisperse in a variety of other diluents. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2539–2548, 1997  相似文献   

2.
Interparticle interactions between colloidal poly(methylmethacrylate) particles stabilised by poly(12-hydroxystearic acid) in non-aqueous media have been investigated using time-average light scattering. The problem of multiple scattering was avoided by using a binary mixture of solvents such that the colloidal particles were optically matched. This enabled the static structure factor to be measured and from the small scattering vector expansion the osmotic pressure to be determined. The softness of the pairwise interaction potential has been exposed using the Chandler-Weeks-Anderson perturbation theory. However, it is concluded that dispersions of the type studied can be reasonably well approximated by a hard sphere fluid model.  相似文献   

3.
Magnetic polymer microspheres have been considered as a kind of new biopolymer materials with great advantages in bioseparation engineering and biomedicine engineering because they have not only polymer functional groups but also magnetic characteristics. Styrene-acrylic acid copolymer (p(S-AA)) magnetic microspheres were synthesized by dispersion polymerization with Fe3O4 as core and p(S-AA) as shell. The microspheres were characterized by SEM, size analysis, molecular weight and solid content measurement. All of them indicate that the microspheres are small in size, narrow in distribution, stable in chemistry and rich in functional groups on their surface. __________ Translated from Journal of Beijing Union University (Natural Science) 2008, 21(3): 82–84  相似文献   

4.
Carbon nanotubes have been shown to be easily dispersed within an acidic aqueous solution of poly(acrylic acid) but precipitate when the pH is increased. Transmission electron microscopy showed that the nanotubes were more exfoliated under the acidic condition but highly aggregated under the basic condition. Carbon K‐edge NEXAFS spectroscopy showed that the carbon nanotubes did not chemically react with poly(acrylic acid) during the dispersion or precipitation and that the dispersion mainly involved physical adsorption of poly(acrylic acid) onto the nanotubes. Together with the carbon K‐edge NEXAFS spectra, the cobalt L3, 2‐edge NEXAFS spectra suggested that under the basic condition, the cobalt impurity within the nanotubes strongly reacted with poly(acrylic acid) resulting in complex formation. Cobalt reduces the adsorption of poly(acrylic acid) onto the nanotubes, which then reduced the nanotube dispersion and resulted in the precipitation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Poly(glycidyl methacrylate) [poly(GMA)] microspheres of narrow size distribution were prepared in a simple one‐step procedure by dispersion radical polymerization. Depending on the solvent used, poly(GMA) particle size could be controlled in the range of 0.5–4 μm by changing the solubility parameter of the reaction mixture. In N,N′‐dimethylformamide (DMF)/methanol mixture, the particle size increased and the size distribution broadened with decreasing initial solubility parameter. While in the DMF/methanol solvent system, hydroxypropyl cellulose (HPC) or cellulose acetate butyrate (CAB) were taken as steric stabilizers of the dispersion polymerization, poly(vinylpyrrolidone) (PVP) was used in alcoholic media. Contrary to the DMF/methanol system, narrow particle size distributions were obtained with PVP‐stabilized polymerizations in ethanolic, methanolic, propan‐1‐olic or butan‐1‐olic medium. Both the particle size and polydispersity were reduced with increasing stabilizer concentration. If lower molecular‐weight PVP was used, larger microspheres were obtained. Poly(GMA) samples prepared in a neat alcoholic medium virtually quantitatively retained oxirane group content after the polymerization. Reactivity of the poly(GMA) microspheres was confirmed by their hydrolysis and aminolysis. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3855–3863, 2000  相似文献   

6.
Anionic dispersion polymerization in a hexane medium has been applied to the synthesis of monodisperse polystyrene particles in the size range of 1.41–6.16 μm, and having narrow molecular weight distributions Mw/Mn of 1.02–1.28. sec-Butyllithium was used as the initiator. Polystyrene-block-polybutadiene diblock copolymer containing 23% polystyrene block, (i.e., Stereon 730A) with a molecular weight of 147,000 g/mol and a polydispersity of 1.05, was found to be a suitable steric stabilizer for the preparation of micron-size polystyrene particles with narrow size distribution. Tetrahydrofuran (THF) was used as a promoter for obtaining narrow molecular weight distributions. However, this study revealed that the addition of small amounts of THF as promoter broadened the particle size distribution. High solids content polystyrene dispersions were also prepared without using any promoter by both batch and/or multi-addition monomer processes. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
The free-radical redox-initiated aqueous solution polymerization of fully and partially neutralized acrylic acid was carried out at room temperature under full exposure to air. The effect of neutralization degree on the polymerization rate and product properties was studied. Increasing neutralization of the reaction mixture with sodium hydroxide resulted in greater conversion of acrylic acid to sodium acrylate. The rate of polymerization, determined from a gravimetric off-line water removal technique, was shown to decrease significantly with decreasing degree of neutralization. Molecular weight also decreased with decreasing degree of neutralization. The glass transition temperature and hydrophilicity of the polymer product decreased with increasing degree of neutralization. In-line infrared monitoring was also used to monitor the reaction progress and was shown to be an effective tool for this purpose.  相似文献   

8.
In this paper, a novel large dimension poly(n-butyl acrylate)-poly(methyl methacrylate-itaconic acid) (PBA-P(MMA-ITA)) core-shell latex particles (CSR) with diameter of 200 nm~300 nm were successfully synthesized via pre-emulsion and semi-continuous seeded emulsion polymerization process. The analysis on the surface tension and coagulation rate of polymeric system, size and distribution of latex particles indicated that the composite emulsifier of sodium dodecyl sulfonate/polyoxyethylene nonyl phenyl ether (SDS/OP-10) had the best emulsified effect. The optimal ratio of SDS/OP-10 was 1:1 and its optimum dosage was 1.0% of monomer amount. FTIR analysis results confirmed that ITA participated in the copolymerization reaction and the chemical bond between P(MMA-ITA) copolymer and PBA core existed in the interfacial of core and shell. DSC analysis results showed that the glass transition temperature (T g) of P(MMA-ITA) copolymer increased with the increase of the ITA dosage and decreased with the increase of the core shell mass ratio. TEM images revealed that CSR particles had core-shell morphology indeed, but the particles’ core-shell morphology would be changed at higher ITA dosage and core shell mass ratio. The size of CSR particles was 330 nm, and the diameter of PBA core was 290 nm. ITA content in the shell of CSR particles was analyzed by non-aqueous acid-base titration. ITA content was the highest at 6% of ITA dosage, ITA amount which chemically bonded with PBA core was the highest at 8% of ITA dosage. When the core shell mass ratio was 60/40, ITA content and ITA amount which grafted onto PBA core were both the highest. ITA content of CSR particles achieved above 1.11% in this work, and it is completely possible for using CSR particles toughening and compatibilizing polyamide 6 (PA 6).  相似文献   

9.
10.
Studies on the mechanism for the formation of the stable dispersion polystyrene prepared by anionic dispersion polymerization of styrene in n-hexane using poly(t-butylstyrene) as the stabilizing moiety in steric stabilizer have been performed by a combination of size exclusion chromatographic (SEC) and transmission electron microscopic (TEM) analyses. When the molecular weight of poly(t-butylstyrene) as the stabilizing moiety exceeded 1.76 X 104 g/mol, the formed polymer particles successfully retained a steric stability. Block copolymerization of t-butylstyrene and styrene in n-hexane has also provided the dispersion polymer particles with a relatively narrow size distribution. The stable dispersion polystyrenes have been produced in n-hexane by polymerization of styrene using the mixture of sec-butyllithium and poly(t-butylstyryl)lithium. The polymerization is called living dispersion polymerization (LDP), in which poly(t-butylstyrene-b-styrene) as the steric stabilizer and polystyrene can be formed simultaneously. The particle size was readily controlled by a combination of the concentration of monomer and the molar ratio of poly(t-butylstyryl)lithium to sec-butyllithium, for instance, [stabilizing moiety]/[RLi]. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Cyclohexylcarbodiimidoethyl methacrylate (CCEMA) and t‐butylcarbodiimidoethyl methacrylate (t‐BCEMA) were prepared in a two‐step synthesis. These monomers were then used to prepare carbodiimide‐functionalized PBMA and PEHMA latex particles, employing two‐stage emulsion polymerization, with the carbodiimide–methacrylate monomers being introduced only in the second stage under monomer‐starved conditions. During emulsion polymerization, the carbodiimide moiety ( NCN ) was found to be unstable at pH 4, but stable when the pH of the dispersion was increased to 8, using NaHCO3 as the buffer. Survival of  NCN group against hydrolysis during the polymerization, and during storage in the dispersion, was enhanced by using EHMA as the comonomer (more hydrophobic) and the t‐butyl carbodiimide derivative. The t‐butyl group provides more steric hindrance to the hydrolysis reaction. A decrease in the reaction temperature from 80°C to 60°C was also found to increase the extent of  NCN group incorporation during emulsion polymerization. Under ideal conditions, more than 98% of the  NCN groups in the monomer feed are successfully incorporated into the latex. When these latex particles are mixed with a  COOH containing latex and allowed to dry, polymer diffusion leading to crosslinking occurs. Films annealed at 60°C reach a gel content of 60% in 10 h. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 855–869, 2000  相似文献   

12.
A number of polyacrylic (PAA) and polymethacrylic (PMAA) acids have been synthesized by living anionic polymerization of the monomeric tert-butyl esters followed by subsequent hydrolysis of the corresponding polyesters. The necessary precautions were taken in order to assure good molecular weight control, as well as high yields in the polymerization reactions. The intermediate and final polymers were characterized by gel permeation chromatography and NMR-H1 spectrometry.  相似文献   

13.
The surface of porous silica particles was modified with poly(acrylic acid) by reacting the carboxyl groups on poly(acrylic acid) with the amino groups of pregrafted aminopropyltriethoxysilane (APS). The chemical modifications by APS and polymer were characterized by infrared spectroscopy and the amount of APS and poly(acrylic acid) grafted to the surface were determined by thermal gravimetric analyses. The wettability of the modified silica particles, based on the rate of water penetration, was pH‐dependent with PAA; at pH 1.5 the wettability increased but at pH 5.5 it decreased dramatically. The pore size and size distribution of the silica particles decreased with APS and polymer grafting. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The dispersion polymerization of methylmethacrylate stabilized by poly(12-hydroxy-stearic acid) in hydrocarbon media has been investigated. Unlike earlier results [7] it was found that stable latex particles can be prepared in the initial monomer concentration range 8.5 % to 34 %. To obtain stable particles varying amounts of stabilizer were used.  相似文献   

15.
Surface-functionalized cationic poly(methylstyrene) (PMS) latex particles containing aldehyde and carboxylic acid groups were successfully achieved via an emulsion polymerization of 3(4)-methylstyrene in the presence of cetyltrimethylammonium bromide, followed by an in-situ oxidation catalyzed by copper chloride and tert-butyl hydroperoxide (t-BuOOH). Factors such as the type of metal catalyst, oxidant, and their concentration strongly affected the rate of oxidation. Step addition of t-BuOOH resulted in both a higher degree of oxidation and a more uniform distribution of particle size of the functionalized PMS as compared to the batch addition method. The effect of organic solvent was found to be insignificant, and the oxidation could still proceed in its absence. The particle sizes increased significantly during the oxidation but could be controlled by using crosslinked PMS latexes. Finally, the versatility of this oxidation process was demonstrated by oxidation of the polymer with a solid loading as high as 28%. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3585–3593, 1997  相似文献   

16.
A facile synthesis of functionalized poly[3(4)-methylstyrene] (PMS) latex particles containing aldehyde and carboxylic acid groups was achieved via an emulsion polymerization of 3(4)-methylstyrene in the presence of sodium dodecyl sulfonate, followed by an in-situ oxidation catalyzed by copper(II) chloride and t-butyl hydroperoxide (t-BuOOH) in the presence of t-butyl alcohol (t-BuOH). The structure of the anionic surfactant, metal catalyst, organic solvent, oxidant, and their concentrations strongly affected the rate of oxidation and the stability of the emulsion. The average size of the polymer latex particles was found to increase after oxidation, and the polymer was slightly crosslinked. A free-radical mechanism is proposed involving metal-catalyzed decomposition of t-BuOOH and benzylic oxidation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1863–1872, 1997  相似文献   

17.
Two materials, pure poly(acrylic acid) (PAA) and nanocomposites with a matrix of PAA and carbon nanotubes (CNTs) as reinforcing agent were synthesized by semi-continuous heterophase polymerization (SHP). CNTs were prepared by a chemical vapor deposition technique and purified by steam. CNTs were characterized by a high resolution scanning electron microscopy (HRSEM) and Raman and Fourier transform infrared spectroscopies. Nanocomposites were prepared with: (i) purified CNTs (CNTsp) or (ii) purified and functionalized CNTs possessing an acyl chloride moiety (CNTsOCl). In both cases, the nanocomposites synthesis was carried out by in situ polymerization of acrylic acid (AA) by SHP. When CNTsOCl were used previously to the polymerization of AA, a series of specific amounts of CNTsOCl and AA were mixed to induce a chemical reaction between the carboxyl group of AA and the acyl chloride group of the CNTsOCl. The product, acrylic acid grafted to CNTsOCl (CNTsOCl-AA), was used to prepare the PAA-CNTsOCl nanocomposites. The PAA-CNTsOCl nanocomposites were characterized by HRSEM, Raman, FTIR and CPMAS 13C-NMR spectroscopies and also by thermogravimetric analysis (TGA). The results reveal that PAA-CNTsOCl nanocomposites were formed by PAA macromolecules grafted to CNTsOCl. The kinetic behavior observed for the synthesis of pure PAA or PAA-CNTsOCl nanocomposites by SHP was similar. Latexes of PAA-CNTsOCl nanocomposites were stable without formation of a precipitate of CNTsOCl for over 1.5 years, while latex prepared with CNTsp and PAA, was unstable and formation of a precipitate of CNTsp was observed immediately after its preparation. PAA-CNTsp nanocomposites were characterized only by TGA. Moreover, latex of the PAA-CNTsp nanocomposite that did not precipitate immediately after its preparation, turned into a gel; this gelation never occurred with the PAA-CNTsOCl nanocomposite latex.  相似文献   

18.
Crosslinked poly(2‐hydroxyethyl methacrylate)‐based magnetic microspheres were prepared in a simple one‐step procedure by dispersion polymerization in the presence of several kinds of iron oxides. Cellulose acetate butyrate and dibenzoyl peroxide were used as steric stabilizer and polymerization initiator, respectively, and ethylene dimethacrylate was a crosslinking agent. The resulting product was characterized in terms of particle size, particle size distribution, iron(III) content, and magnetic properties. In the presence of needle‐like maghemite in the polymerization mixture and under suitable conditions, magnetic microspheres with relatively narrow size distribution were formed. An increase in the particle size and, at the same time, a decrease in molecular weight of uncrosslinked polymers resulted, as the continuous phase became richer in 2‐methylpropan‐1‐ol. Coercive force of needle‐like maghemite‐containing particles was higher than that of cubic magnetite‐loaded microspheres. Coercive force increased with the decreasing iron content in the particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1161–1171, 2000  相似文献   

19.
20.
Surface pressure-area isotherms have been determined for both a pure lecithin (L, -dipalmitoyl phosphatidyl choline) and an impure lecithin (soya bean lecithin) at the water/air and water/oil interfaces. Equations of state have been applied and an equation of Gaines was found to be particularly successful in describing the isotherms. Mixed monolayers with an ABA nonionic block copolymer surfactant (A is poly(12-hydroxystearic) acid and B is poly(ethylene oxide)) were also investigated. The additivity rule was obeyed only at high surface pressures; inefficient packing was observed at low surface pressures. The polymer may promote a horizontal headgroup orientation in the lecithin, which gives rise to this effect. The presence of electrolyte up to very high concentrations in the aqueous phase (8.75 mol dm–3 NH4NO3) was shown to expand the lecithin monolayer.Glossary of symbols W/A Water-air interface - W/O Water-oil interface - E/A Electrolyte-air interface - L-C Liquid-condensed - A c Area per molecule obtained by conventional extrapolation of the -A isotherm at close-packing - A e Experimentally determined area per molecule - A t Theoretically predicted area per molecule - A v Area per molecule obtained by vertical extrapolation of the -A isotherm at close-packing - A 0 Head group area term - f i Activity coefficient of water in surface region - i Constant - x i Mol fraction of componenti - Z Compressibility factor=A/kT - Interfacial tension - Surface pressure - i Partial molar area of component i  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号