首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li2I(OH): A Compound with Onedimensional Infinite Edge Sharing [Li4/2(OH)+] Pyramids The pseudobinary system LiOH/LiI was investigated by X-ray methods. Two compounds, Li2I(OH) and Li5I(OH)4 exist. The structure of Li2I(OH) was solved by single-crystal data. For Li5I(OH)4 lattice constants and space group symmetry are given: Li2I(OH): Pnma, Z = 4, a = 10.339(4) Å, b = 5.567(1) Å, c = 6.643(2) Å, Z(Fo) mit (Fo)2 ≧ 3σ(Fo)2 = 439, Z (parameter) = 23, R/Rw = 0.030/0.040 Li5I(OH)4: Pmmn or P21mn(= Pmn21), Z = 2, a = 10.42 Å, b = 5.30 Å, c = 5.81 Å Li2I(OH) crystallizes in a new type of structure. The motif of a distorted hexagonal close-packed arrangement of iodide ions is penetrated by chains of [Li4/2(OH)+].  相似文献   

2.
K2Br(OH) and Rb2Br(OH): Two New Ternary Alkali Metal Halide Hydroxides with a Pronounced Structural Relationship to KOH resp. RbOH Two isotypic compounds K2Br(OH) and Rb2Br(OH) were prepared in the systems KOH/KBr and RbOH/RbBr. Their structures were determined by single crystal X-ray methods: K2Br(OH): P21/m, Z = 2, a = 6.724(1) Å, b = 4.272(4) Å, c = 8.442(2) Å, β = 108.14(2)°, Z(Fo) = 651 with (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 28, R/Rw = 0.041/0.047 Rb2Br(OH): P21/m, Z = 2, a = 6.918(3) Å, b = 4.483(2) Å, c = 8.850(5) Å, β = 108.08(6)°, Z(Fo) = 326 mit (Fo)2 ≥ 3σ(Fo)2, Z(parameter) = 27, R/Rw = 0.074/0.082. The compounds are built up by chains of [M2(OH)+] connected via Br?. The structure of the chains as well as their orientation to one another show a pronounced relationship to the structures of the room temperature modifications of the isotypic binary hydroxides KOH and RbOH.  相似文献   

3.
Unusual Coordination Polyhedra around Oxygen in Li4Cl(OH)3 The pseudobinary system LiOH/LiCl was investigated by X-ray methods. Two compounds, Li4Cl(OH)3 and Li2Cl(OH), were obtained. The crystal structure of Li4Cl(OH)3 solved by single-crystal methods is delt with. For Li2Cl(OH) powder diffraction data are given: Li4Cl(OH)3: P21/m, Z = 2, a = 5.4096(8) Å, b = 7.382(2) Å, c = 6.2076(8) Å, β = 94.40(1)°, Z(Fo) with (Fo)2 ≧ 3σ(Fo)2 = 483, Z (parameter) = 50, R/Rw = 0.022/0.025 Li2Cl(OH): Pmma, Z = 2, a = 7.680(8) Å, b = 4.001(7) Å, c = 3.899(6) Å The hydroxide rich compound crystallizes in a new type of structure which contains puckered layers [Li4(OH)3+] connected via chloride ions.  相似文献   

4.
On the first Alkaline-Alkaline-Earth-Oxo/Peroxo-Aurate(III): NaBa4AuO4(O2)2 The hitherto unknown compound NaBa4AuO4(O2)2 was prepared by oxidizing of barium gold alloy with Na2O2 in closed Ag-bombs. X-ray single crystal investigation led to tetragonal symmetry space group DI4/mmm, a = 5.939; c = 15.393 Å, Z = 2. NaBa4AuO4(O2)2 shows a distorted square antiprismatic surrounding of Ba2+ by four peroxo groups on one side and four O2? on the opposite. Au3+ shows the usual square planar polygons of AuO4. Na+ is coordinated by four O2? ions in the base of an octahedron and two peroxo groups in the apical positions.  相似文献   

5.
KEu(CH3COO)3, the First Ternary Europium(II) Acetate On of EuCl2 with a melt of dry potassium acetate yields pale greenish-yellow single crystals (300°C, sealed glass ampoule, EuCl2 and K(CH3COO) in a molar ratio of 1 : 3). The crystal structure determination (orthorhombic, P212121 (no. 19), Z = 8, a = 1166.3(1) pm, b = 1288.4(2) pm, c = 1493.9(2) pm, R = 0.043, Rw = 0.032) revealed the composition KEu(CH3COO)3. The structure consists of one-dimensional chains built up by bridging acetate groups in the [100] and [001] directions in which potassium and europium alternate as central atoms. Eu2+ is surrounded by nine and eight and K+ by seven and six oxygen atoms, respectively. These chains are linked in the [010] direction so that a three-dimensional network is formed. The high coordination numbers of the acetate oxygen atoms of up to four are remarkable. Therefore, the acetate groups have highly bridging functions in addition to their chelating coordination of the cations.  相似文献   

6.
The First “Litho-Manganate(V)” with Layer-Structure: Cs2{Li[MnO4]} By heating intimate mixtures of the oxides [CsO1,2, Li2MnO3; Cs: Mn = 2,3 : 1; Ag-Zylinder, 580°C, 62 d] blue-green single crystals of Cs2{Li[VO4]} were obtained for the first time. The new “Litho-Manganate(V)” crystallices orthorhombic (SG: Cmc21) with a = 596.08(7), b = 1202.6(1), c = 816.8(1) pm (Guinier-Simon data), Z = 4. It is isotypic with Cs2{Li[VO4]} [1]. The structure was determined by four-circle-diffractometer data [Mo? Kα , for 496Io(hkl) R = 3.1%, R, = 2.4%], parameters see text. The Madelung Part of Lattice Energie, MAPLE and Effective Coordination Numbers, ECoN, these calculated via Mean Fictive Ionic Radii, MEFIR, are calculated and disscussed.  相似文献   

7.
The Structures of some Hexaammine Metal(II) Halides of 3 d Metals: [V(NH3)6]I2, [Cr(NH3)6]I2, [Mn(NH3)6]Cl2, [Fe(NH3)6]Cl2, [Fe(NH3)6]Br2, [Co(NH3)6]Br2 and [Ni(NH3)6]Cl2 Crystals of yellow [V(NH3)6]I2 and green [Cr(NH3)6]I2 were obtained by the reaction of VI2 and CrI2 with liquid ammonia at room temperature. Colourless crystals of [Mn(NH3)6]Cl2 were obtained from Mn and NH4Cl in supercritical ammonia. Colourless transparent crystals of [Fe(NH3)6]Cl2 and [Fe(NH3)6]Br2 were obtained by the reaction of FeCl2 and FeBr2 with supercritical ammonia at 400°C. Under the same conditions orange crystals of [Co(NH3)6]Br2 were obtained from [Co2(NH2)3(NH3)6]Br3. Purple crystals of [Ni(NH3)6]Cl2 were obtained by the reaction of NiCl2 · 6H2O and NH4Cl with aqueous NH3 solution. The structures of the isotypic compounds (Fm3 m, Z = 4) were determined from single crystal diffractometer data (see “Inhaltsübersicht”). All compounds crystallize in the K2[PtCl6] structure type. In these compounds the metal ions have high-spin configuration. The orientation of the dynamically disordered hydrogen atoms of the ammonia ligands is discussed.  相似文献   

8.
The First Quaternary Oxide of Monovalent Cobalt: CsK2[CoO2] Dark-red single crystals of CsK2[CoO2] were obtained via ?reaction with the cyliner surface”? by heating powders of Cs2K2Cd3O5 in closed Co-cylinders at 500°C during 48 d. Structure solution and refinement (four-circle diffractometer data, MoKα , 147 independent Io(hkl), none was omitted, R = 3.42%, Rw = 2.24%) show close relationship with RbNa2[NiO2] [2]. The lattice-constants are: (powder data, standard deviations in parentheses) MAPLE calculations, investigations of magnetism and EPR measurement add to the monovalence of Co.  相似文献   

9.
Ag5GeO4, the First Subvalent Ternary Silver Oxide Applying high oxygen pressure the first subvalent ternary silver oxide Ag5GeO4 was obtained (for crystallographic data c.f. “Inhaltsübersicht”). Ag5GeO4 contains tetrahedral GeO44?-ions besides [Ag6]4+ clusters, which have not been observed in ternary silver oxides, so far. The electrical and magnetical properties prove the localisation of two paired electrons in each silver octahedron. The thermal decomposition occurs in two steps at 432.7 °C and 524.5°C.  相似文献   

10.
Na2Li3CoO4, the First Quaternary Oxocobaltate(III) of the Alkali Metals For the first time we obtained Na2Li3CoO4 by annealing intimate mixtures of Co3O4, Na2O2, and Li2O [Co : Na : Li = 1 : 2.2 : 10.1; 760°C; 21 d; Ag-tube] in form of transparent red single crystals. Structure Refinement [four-circle diffractometer data; AED2; MoKα-radiation; 1016 Io(hkl); R = 2.6%; Rw = 2.0%; space group Pnnm; Z = 4; a = 818.7(3), b = 799.4(2), c = 655.1(2) pm] confirms the isotypism to Na2Li3GaO4 [2] and Na2Li3FeO4 [3]. Mean Fictive Ionic Radii, MEFIR, Effective Coordination Numbers, ECoN, and the Charge Distribution were calculated. The isotypism of Na2Li3CoO4 and Na2Li3GaO4 is compared graphically.  相似文献   

11.
Na4Br(NH2)3: An Amide Bromide in the System NaNH2/NaBr The pseudobinary system NaNH2/NaBr was investigated by X-ray methods. The crystal structure of Na4Br(NH2)3 was solved by single crystal data: Pnnm, Z = 4, a = 6.579(2) Å, b = 12.755(4) Å, c = 8.776(2) Å Z(Fo) with (Fo)2 ≥ 3σ = (Fo)2 = 503, Z(parameter) = 39, R/Rw = 0.082/0.106. It is a new type of structure, built up by a three-dimensional network of [Na4(NH2)3+] containing the bromide ions.  相似文献   

12.
[La2Cl3(OAc)2(H2O)7]Cl: The First Lanthanide-Acetate-Halide-Hydrate with Chloride in Inner-Sphere Coordination [La2Cl3(OAc)2(H2O)7]Cl has been obtained as single crystals through the reaction of LaCl3 · 7H2O with diluted acetic acid or from La2O3 with acetyl chloride. In the crystal structure (triclinic, Z = 2, P1 (no. 2), a = 919.6(2), b = 950.7(2), c = 1178.9(2) pm, α = 82.52(1), β = 84.14(1), γ = 64.69(1)°, R = 0.021, Rw = 0.020), La3+ is surrounded by nine ligands (O, Cl). La1 has two chloride and seven oxygen ligands whereas La2 has one chloride and eight oxygen atoms as nearest neighbours. Four of the oxygen ligands of each lanthanum cation originate from a ?tetradentate”? acetate anion, the others from crystal water molecules. The ?tetradentate”? acetate groups are coordinated not only to one central La3+ as chelate ligands, but also to the ?left”? and ?right”? La3+ neighbours. Thereby, a one-dimensional infinite cationic chain, [La2Cl3(OAc)2(H2O)7]+, is formed that runs in the [011] direction. These chains are held together by ?lonesome”? chloride ions which are surrounded by (4 + 1) water molecules and connected to the chains via hydrogen bonds.  相似文献   

13.
Ammonolysis Reaction of (NH4)2GeF6. Synthesis and Structure of NH4[Ge(NH3)F5] (NH4)2GeF6 reacts with ammonia to yield NH4[Ge(NH3)F5] at 280°C. The reaction path was elucidated by in situ time and temperature resolved X-ray powder diffraction. NH4[Ge(NH3)F5] crystallizes isostructurally to NH4[Si(NH3)F5] in the tetragonal space group P4/n (No. 85) with lattice constants a = 619.41(1) pm and c = 724.70(1) pm. The germanium atom is coordinated by five fluorine atoms and the nitrogen atom of the ammonia molecule. The ammonium cation is located on the Wyckoff position (2 a) in P4/n. The crystal structure is stabilized by extensive hydrogen bonding.  相似文献   

14.
Synthesis and Structure of Sn(NH2)2F2 Diamido-difluoro-tin Sn(NH2)2F2 can be produced by ammonolysis from (NH4)2SnF6 at 613 K. The compound is a product from Sn(NH3)2F4 formed during the ammonolysis reaction. Sn(NH2)2F2 crystallizes in space group C2/m (No. 12) with lattice constants a = 1070.18(7), b = 325.38(3) pm, c = 505.02(3) pm and β = 105.728(3)° (V = 169.271(6) · 106 pm3) containing two formula units per unit cell. Data refinement by the Rietveld method yields a Bragg R-value of RBragg = 0.0514 (Profile R-value Rwp = 0.177). Tin is octahedrally coordinated by two fluorine atoms and for amido groups. The octahedra are connected to one-dimensional strings by edge sharing. The NH2 groups are in the bridging position whilst the fluorine atoms are terminal.  相似文献   

15.
Na2Mn(NH2)4: A New Type of Layered Structure The structure of Na2Mn(NH2)4 was solved by X-ray single crystal data including H-positions: P21/c, Z = 4, a = 6.331(1) Å, b = 14.542(3) Å, c = 7.212(1) Å, β = 116.29(1)°, Z(F ≥ 3σ = (F)) = 1343, Z(parameters) = 96, R/RW = 0.023/0.029. The compound crystallizes in a new type of structure. Within layered blocks the amide ions are arranged with the motif of a hexagonal closest packing of spheres. Within these blocks alternating layers contain sodium in all octahedral sites and manganese in an ordered way in a quarter of tetrahedral sites.  相似文献   

16.
Tetraammine Lithium Cations Stabilizing Phenylsubstituted Zintl-Anions: The Compound [Li(NH3)4]2[Sn2Ph4] Ruby-red, brittle single crystals of [Li(NH3)4]2[Sn2Ph4] were synthesized by the reaction of diphenyltin dichloride and metallic lithium in liquid ammonia at ?35°C. The structure was determined from X-ray singlecrystal diffractometer data: Space group, P1 , Z = 1, a = 9.462(2) Å, b = 9.727(2) Å, c = 11.232(2) Å, α = 66.22(3)°, β = 85.78(3)°, γ = 61.83(3)°, R1 (F ? 4σF) = 5.13%, wR2 (F02 ? 4σF) = 10.5%, N(F ? 4σF) = 779, N(Var.) = 163. The compound contains to Sb2Ph4 isosteric centres [Sn2Ph4]2? as anions which are connected to rods by lithium cations in distorted tetrahedral coordination by ammonia. These rods are arranged parallel to one another in the b,c-plane, but stacked along [100].  相似文献   

17.
Na4AuTl, the First Ternary Compound in the System Sodium/Gold/Thallium Silver coloured, brittle single crystals of Na4AuTl were obtained by the reaction of NaN3, gold sponge and TlN3 at 773 K. The structure was determined from X-ray single-crystal diffractometry data: Na4AuTl crystallizes in a new structure type with separated gold and thallium partial structures. These consist of linear [Au2/2] chains and [Tl2] dumb-bells. Structural relationships between Na2Au and the Na Au partial structure of Na4AuTl are discussed.  相似文献   

18.
The New Ternary Boride Mg8Pt4B and the New Intermetallic Compound PtMg2 The new magnesium platinum boride Mg8Pt4B was obtained from a reaction of the elements in sealed niobium tubes. It crystallizes isotypically with Mg8Rh4B in the cubic space group with a =12.2481(1) Å and can be structurally derived from the Ti2Ni structure type, where boron occupies cavities, which are formed by four magnesium and four platium atoms. The new intermetallic compound PtMg2 was also prepared by reaction of the elements in a sealed Nb container and adopts the tetragonal CuAl2 type structure, space group I4/mcm with a = 6.334(1) Å and c = 5.621(1) Å.  相似文献   

19.
Ba5[CrN4]N: The First Nitridochromate(V) Ba5[CrN4]N is prepared by reaction of mixtures of Li3N, Ba3N2 and CrN/Cr2N (1 : 1) (molar ratio Li : Ba : Cr = 3 : 5 : 1) in tantalum crucibles at 700°C with flowing nitrogen (1 atm) within a period of 48 h. After cooling down to room temperature (60°C/h) black-shining single crystals of the ternary phase with a platy habit are obtained (monoclinic, C2/m; a = 1054.0(2) pm, b = 1170.9(3) pm, c = 937.7(2) pm, b? = 110,79(2)°; Z = 4). The crystal structure contains isolated complex anions [CrVN4]7? which nearly satisfy the ideal tetrahedral symmetry (Cr? N [pm]: 2 × 175.3(4), 2 × 175.8(5); N? Cr? N [°]: 106.8(2), 109.5(2), 2 × 109.9(2), 2 × 110,3(2)). The coordination sphere for each of the terminal nitride functions of the complex anions is completed by five neighbouring Ba2+ ions (distorted CrBa5 octahedra). The octahedra are connected via common CrBa2 faces as well as CrBa edges thereby forming condensed tetrameric octahedral groups. The isolated nitride ions which are also present in the crystal structure of Ba5[CrN4]N are in an octahedral environment of Ba2+ ions. The presence of a d1-System (Cr(V)) is confirmed by magnetic susceptibility data.  相似文献   

20.
The First Titanate with ?Stuffed Pyrgoms”?: RbNa3Li12[TiO4]4 = RbNa3Li8{Li[TiO4]}4 By heating a well grounded mixture of the binary oxides Rb2O, Na2O, Li2O, and TiO2 [Rb:Na:Li:Ti = 1.1:3.1:12.5:4.0; 780°C, 41 d] we obtained RbNa3Li8{Li[TiO4]}4 as colourless platelike crystals. This first titanate with ?stuffed pyrgoms”? is isostructural with RbNa3Li8{Li[SiO4]}4, CsKNa2Li8{Li[SiO4]}4 and CsKNaLi9{Li[SiO4]}4 [2]. The compound crystallizes tetragonal I4/m with a = 1 125.8(1) pm and c = 652.4(1) pm (Guinier-Simon-Data, Z = 2). The structure was determined by four-cyrcle-data (Siemens AED2, MoK) and leds to the residual values R = 3.7% and Rw = 3.1% (additional data see text). The Madelung Part of Lattice Energy (MAPLE), Effective Coordination Numbers (ECoN), Mean Fictive Ionic Raddii (MEFIR) and the Charge Distribution in Solids (CHARDI) are calculated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号