首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

2.
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa‐bridging elements. Their preparation was achieved by salt‐elimination reactions of the dilithiated precursor [Mn(η5‐C5H4Li)(η6‐C6H5Li)]?pmdta (pmdta=N,N,N′,N′,N′′‐pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single‐atom‐bridged derivatives, [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] and [Mn(η5‐C5H4)(η6‐C6H5)SiPh2], could also be determined by X‐ray structural analysis. We investigated for the first time the reactivity of these ansa‐cyclopentadienyl–benzene manganese compounds. The reaction of the distannyl‐bridged complex [Mn(η5‐C5H4)(η6‐C6H5)Sn2tBu4] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn?Sn bond to give a triatomic ansa‐bridge. The investigation of the ring‐opening polymerization (ROP) capability of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] showed that an unexpected, unselective insertion into the Cipso?Sn bonds of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] had occurred.  相似文献   

3.
The first title metallocene, 1,3‐bis(dichlorotitanocene)‐1,1,3,3‐tetramethyldisiloxane dichloromethane solvate, [(η5‐C5H5)­TiCl2­(η5‐C5H4­Si­Me2)]2O·­CH2Cl2, (I), crystallizes in space group P21/c. Compound (I) represents the first crystal structure of a bimetallic siloxy‐bridged titanocene. The geometric parameters of (I) are similar to those of the parent titanocene; however, the disiloxane substituents adopt an unexpected eclipsed conformation. The second title metallocene, 1,3‐bis­[(penta­methyl­cyclo­penta­dienyl)­(cyclo­penta­dien­yl)­titanium dichloride]‐1,1,3,3‐tetra­methyl­disiloxane, [(η5‐C5‐Me5)­TiCl2­(η5‐C5H4­Si­Me2)]2O, (II), represents the second crystal structure of a bimetallic siloxy‐bridged titanocene and crystallizes in the space group P21/n. Compound (I) possesses non‐crystallographic twofold molecular symmetry and both metal centers adopt pseudo‐tetrahedral geometries. The geometric parameters of (II) are similar to those of the mixed titanocene Cp*CpTiCl2 (Cp* = C5Me5) and the disiloxane substituents adopt a staggered conformation.  相似文献   

4.
Reacting stoichiometric amounts of 1‐(diphenylphosphino)ferrocene­carboxylic acid and [Ti(η5‐C5HMe4)22‐Me3SiC[triple‐bond]CSiMe3)] produced the title carboxyl­atotitanocene complex, [{μ‐1κ2O,O′:2(η5)‐C5H4CO2}{2(η5)‐C5H4P(C6H5)2}{1(η5)‐C5H(CH3)4}2FeIITiIII] or [FeTi(C9H13)2(C6H4O2)(C17H14P)]. The angle subtended by the Ti/O/O′ plane, where O and O′ are the donor atoms of the κ2‐carboxy­late group, and the plane of the carboxyl‐substituted ferrocene cyclo­penta­dienyl is 24.93 (6)°.  相似文献   

5.
Metallocene dihalides and derivatives thereof are of great interest as precursors for catalysts in polymerization reactions, as antitumor agents and, due to their increased stability, as suitable starting materials in salt metathesis reactions and the generation of metallocene fragments. We report the synthesis and structural characterization of a series of eleven substituted bis(η5‐cyclopentadienyl)titanium dihalides, namely bis[η5‐1‐(diphenylmethyl)cyclopentadienyl]difluoridotitanium(IV), [Ti(C18H15)2F2], bis{η5‐1‐[bis(4‐methylphenyl)methyl]cyclopentadienyl}difluoridotitanium(IV), [Ti(C20H19)2F2], and bis{η5‐1‐[bis(adamantan‐2‐yl)methyl]cyclopentadienyl}difluoridotitanium(IV), [Ti(C15H19)2F2], together with the bromide and iodide analogues, and the chloride analogues of the diphenylmethyl and adamantyl complexes. These eleven complexes were prepared by the reaction of the corresponding bis(η51‐pentafulvene)titanium complexes with different hydrogen halides (Cl, Br and I). The titanocene fluorides become available via chloride–fluoride exchange reactions.  相似文献   

6.
The reaction of decamethylytterbocene [(η5‐C5Me5)2Yb(THF)2] with SO2 at low temperature gave two new compounds, namely, the YbIII dithionite/sulfinate complex [{(η5‐C5Me5)2Yb(μ3,1κ2O1,3,2κ3O2,2′,4‐S2O4)}2{(η5‐C5Me5)Yb(μ,1κO,2κO′‐C5Me5SO2)}2] ( 1 ) and the YbIII dithionite complex [{(η5‐C5Me5)2Yb}2(μ,1κ2O1,3,2κ2O2,4‐S2O4)] ( 2 ). After extraction of 1 , the mixture was heated to give the dinuclear tetrasulfinate complex [{(η5‐C5Me5)Yb}2(μ,κO,κO’‐C5Me5SO2)4] ( 3 a ). In contrast, from the reaction of [(η5‐C5Me5)2Eu(THF)2] with SO2 only the tetrasulfinate complex [{(η5‐C5Me5)Eu}2(μ,κO,κO’‐C5Me5SO2)4] ( 3 b ) was isolated. Two major reaction pathways were observed: 1) reductive coupling of two SO2 molecules to form the dithionite anion S2O42?; and 2) nucleophilic attack of one metallocene C5Me5 ligand on the sulfur atom of SO2. The compounds presented are the first dithionite and sulfinate complexes of the f‐elements.  相似文献   

7.
Heterobimetallic Phosphanido-bridged Dinuclear Complexes - Syntheses of cis-rac-[(η-C5H4R)2Zr{μ-PH(2,4,6-iPr3C6H2)}2M(CO)4] (R?Me, M?Cr, Mo; R?H, M?Mo) The zirconocene bisphosphanido complexes [(η-C5H4R)2Zr{PH(2,4,6-iPr3C6H2)}2] (R?Me, H) react with [(NBD)M(CO)4] (NBD?norbornadiene, M?Cr, Mo) to give only one diastereomer of the phosphanido-bridged heterobimetallic dinuclear complexes cis-rac-[(η-C5H4R)2Zr{μ-PH(2,4,6-iPr3C6H2)}2M(CO)4] [R?Me, M?Cr ( 1 ), Mo ( 2 ); R?H, M?Mo ( 3 )]. However, no reaction was observed between [(η-C5H5)2Zr{PH(2,4,6-tBu3 C6H2)}2] and [Pt(PPh3)4]. 1—3 were characterised spectroscopically. For 1—3 , the presence of the racemic isomer was shown by NMR spectroscopy. No reaction was observed at room temperature for 3 and CS2, (NO)BF4, Me3NO or PH(2,4,6-Me3C6H2)2. With Et2AlH or PhC?CH decomposition of 3 was observed.  相似文献   

8.
The synthesis and crystal structures of two dinuclear titanocene hydride complexes are reported. Both complexes, namely bis(η5‐(di‐para‐tolylmethyl)cyclopentadienyl)titanium hydride dimer, [(η5‐C20H19)2Ti(μ‐H)]2 ( 2a ), and bis(η5‐2‐adamantylcyclopentadienyl)‐titanium hydride dimer, [(η5‐C15H19)2Ti(μ‐H)]2 ( 2b ), are formed via activation of molecular hydrogen by the corresponding bis(η51‐pentafulvene)titanium complexes 1a and 1b at ambient temperatures and pressures in high yields. The hydride complexes 2a and 2b exhibit planar [Ti2H2] cores and, as a result of the heterolytic cleavage of molecular hydrogen, substituted Cp Ligands were formed during the reaction.  相似文献   

9.
Two 4‐coordinated titanocene complexes, [(η5‐C5H5)2Ti(O,O′)(5‐NO2‐OCC6H3)] (I) and [(η5‐C5H5)2Ti(2‐OH‐5‐NO2‐O2CC6H3)2] (II), have been synthesized by reaction of Cp2TiCl2 and 5‐nitrosalicylic acid in aqueous media. Single‐crystal X‐ray analyses of I and II display the mononuclear forms of TiIV, and geometries at titanium atoms are distorted tetrahedrons, while the coordination environment at TiIV in complex I is different from that in complex II. Crystallographic characterization revealed that each of the complexes exhibits a three‐dimensional framework constructed through weak interactions, which are H‐bonding, π–π stacking and C–H·π interactions, but they differ greatly when forming the three‐dimensional network structure in both complexes. The results show that the dramatic change of conditions has great effect on the molecular structure of 5‐nitrosalicylate titanocene, thereby significantly influencing the weak interactions and the specific framework structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Reaction of Mo(CO)(η2‐C2Ph2)24‐C4Ph4) and Me3NO in acetonitrile solvent affords Mo(NCMe)(η2‐C2Ph2)24‐C4Ph4) 1 . Compound 1 reacts with trimethylphosphine to produce Mo(PMe3)(η2‐C2Ph2)24‐C4Ph4) 2 , or reacts with diphenylacetylene to produce (η5‐C5Ph5)2Mo 3 and Mo(η2‐O2CPh)(η4‐C4Ph4H)(η4‐C4Ph4) 4 . The molecular structures of 1, 2 and 4 have been determined by an X‐ray diffraction study.  相似文献   

11.
Syntheses and Structures of η1‐Phosphaallyl, η1‐Arsaallyl, and η1‐Stibaallyl Iron Complexes [(η5‐C5Me5)(CO)2Fe–E(SiMe3)C(OSiMe3)=CPh2] (E = P, As, Sb) The reaction of equimolar amounts of [(η5‐C5Me5)(CO)2Fe–E(SiMe3)2] ( 1 a : E = P; 1 b : As; 1 c : Sb) and diphenylketene afforded the η1‐phosphaallyl‐, η1‐arsaallyl‐, and η1‐stibaallyl complexes [(η5‐C5Me5)(CO)2Fe–E(SiMe3)C(OSiMe3)=CPh2] ( 2 a : E = P; 2 b : As; 2 c : Sb). The molecular structures of 2 b and 2 c were elucidated by single crystal X‐ray analyses.  相似文献   

12.
Synthesis, Structure, and Reactivity of η1‐ and η3‐Allyl Rhenium Carbonyls In (η3‐C3H5)Re(CO)4 one CO ligand can be substituted by PPh3, pyridine, isocyanide and benzonitrile. With 1,2‐bis(diphenylphosphino)ethylene, 1,1′‐bis(diphenylphosphino)ferrocene and 1,2‐bis(4‐pyridyl)ethane dinuclear ligand bridged complexes are obtained. The η3‐η1 conversion of the allyl ligand occurs on reaction of (η3‐C3H5)Re(CO)4 with the bidendate ligands 1,2‐bis(diphenylphosphino)ethane and 1,3‐bis(diphenylphosphino)propane and with 2,2′‐bipyridine (L–L) which gives the complexes (η1‐C3H5)Re(CO)3(L–L). By reaction of (η3‐C3H5)Re(CO)4 with bis(diphenylphosphino)methane the allyl group is protonated and under elemination of propene the complex (OC)3Re(Ph2PCHPPh2)(η1‐Ph2PCH2PPh2) ( 19 ) with a diphosphinomethanide ligand is formed. On heating solutions of (η3‐C3H5)Re(CO)4 and (η3‐C3H5)Re(CO)3(CN‐2,5‐Me2C6H3) ( 5 ) in methanol the methoxy bridged compounds Re4(CO)12(OH)(OMe)3 and Re2(CO)4(CN‐2,5‐Me2C6H3)4(μ‐OMe)2 ( 20 ) were isolated. The crystal structures of (η3‐C3H5)Re(CO)3(CNCH2SiMe3) ( 4 ), [(η3‐C3H5)(OC)3Re]2‐ (μ‐bis‐(diphenylphosphino)ferrocene) ( 8 ), (η1‐C3H5)Re(CO)3‐ (bpy) ( 14 ), of 19 , 20 and of (OC)3Re‐[Ph2P(CH2)3PPh2]Cl ( 16 ) were determined by X‐ray diffraction.  相似文献   

13.
The reaction of α,α′‐dimercapto‐o‐xylene (H2dmox) with different precursors such as SnMe2Cl2, [Ti(η5‐C5H5)2Cl2] and [Ti(η5‐C5H4Me)2Cl2] (1:1) in the presence of two equivalents of NEt3 yielded the complexes [SnMe2(dmox)] (1), [Ti(η5‐C5H5)2(dmox)] (2) and [Ti(η5‐C5H4Me)2(dmox)] (3), respectively. 1–3 have been characterized by spectroscopic methods; in addition, complex 3 has been determined by X‐ray diffraction studies. Furthermore, structural studies based on density functional theory calculations of 1 and 2 have been carried out. The cytotoxic activity of 1–3 was tested against the tumour cell lines human adenocarcinoma HeLa, human myelogenous leukaemia K562 and human malignant melanoma Fem‐x. The results of this study show a higher cytotoxicity of the tin(IV) complex (1) in comparison to their titanium(IV) counterparts (2 and 3) as well as an improvement in the cytotoxic activity of compounds 2 and 3 compared to their titanocene(IV) dichloride analogues [Ti(η5‐C5H5)2Cl2] and [Ti(η5‐C5H4Me)2Cl2]. In view of the relatively high cytotoxicity of compound 1, a detailed study on the effects of the in vitro treatment of cancer cell lines using this compound was carried out. Thus cell cycle experiments on all the studied cell lines treated with 1 show that this complex seems to cause disturbances in the G1 phase of HeLa, and in the G1 and G2/M phases of Fem‐x cell line, while almost no disturbances were observed in the cycle of K562 cells treated with 1. Finally, DNA laddering method showed that treatment of the HeLa and Fem‐x cell lines with IC90 doses of 1 resulted in the induction of apoptosis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Phosphanediyl Transfer from Inversely Polarized Phosphaalkenes R1P=C(NMe2)2 (R1 = tBu, Cy, Ph, H) onto Phosphenium Complexes [(η5‐C5H5)(CO)2M=P(R2)R3] (R2 = R3 = Ph; R2 = tBu, R3 = H; R2 = Ph, R3 = N(SiMe3)2) Reaction of the freshly prepared phosphenium tungsten complex [(η5‐C5H5)(CO)2W=PPh2] ( 3 ) with the inversely polarized phosphaalkenes RP=C(NMe2)2 ( 1 ) ( a : R = tBu; b : Cy; c : Ph) led to the η2‐diphosphanyl complexes ( 9a‐c ) which were isolated by column chromatography as yellow crystals in 24‐30 % yield. Similarly, phosphenium complexes [(η5‐C5H5)(CO)2M=P(H)tBu] (M = W ( 6 ); Mo ( 8 )) were converted into (M = W ( 11 ); Mo ( 12 )) by the formal abstraction of the phosphanediyl [PtBu] from 1a . Treatment of [(η5‐C5H5)(CO)2W=P(Ph)N(SiMe3)2] ( 4 ) with HP=C(NMe2)2 ( 1d ) gave rise to the formation of yellow crystalline ( 10 ). The products were characterized by elemental analyses and spectra (IR, 1H, 13C‐, 31P‐NMR, MS). The molecular structure of compound 10 was elucidated by an X‐ray diffraction analysis.  相似文献   

15.
Transition Metal‐substituted Phosphaalkenes. 42 Reactivity of the Ferriophosphaalkenes [(η5‐C5Me5)(CO)2FeP=C(NR )R2] (NR = NMe2, NC5H10, R2 = Ph, t Bu) towards Protic Acids, Alkylation Reagents, and [{( Z )‐Cyclooctene}Cr(CO)5] The reaction of equimolar amounts of [(η5‐C5Me5)(CO)2FeP=C(NR )R2] ( 2 a : NR = NMe2, R2 = Ph; 2 b : NMe2. tBu; 2 c : NC5H10, Ph) and etherial HBF4 gave rise to the formation of [(η5‐C5Me5)(CO)2FeP(H)C(NR )R2] (BF4) ( 3 a – c ) which were isolated as light red powders. Compounds 2 a – c were converted into [(η5‐C5Me5)(CO)2FeP(Me)C(NR )R2] (SO3CF3) ( 4 a – c ) by treatment with methyl trifluoromethane sulfonate. In addition 2 a and Me3SiCH2OSO2CF3 afforded light red [(η5‐C5Me5)(CO)2FeP(CH2SiMe3)C(NMe2)Ph](SO3CF3) ( 5 ). The black complex [(η5‐C5Me5)(CO)2FeP{Cr(CO)5}C(NMe2)Ph] ( 6 ) resulted from the combination of 2 a with [{(Z)‐cyclooctene}Cr(CO)5]. The novel products were characterized by elemental analyses and spectra (IR, 1H‐, 13C‐ und 31P‐NMR).  相似文献   

16.
The reactions of the bis(trimethylsilyl)acetylene permethylmetallocene complexes CpM(η2‐Me3SiC2SiMe3) (M = Ti ( 1 ), M = Zr ( 2 )) with H2O and CO2 were studied and compared to those of the corresponding metallocene complexes Cp2M(L)(η2‐Me3SiC2SiMe3) (M = Ti ( 3 ), L = – ; M = Zr, L = THF ( 4 )) to understand the influence of the ligands Cp(η5‐C5H5) and Cp*(η5‐C5Me5) as well as the metals titanium and zirconium on the reaction pathways and the obtained products. In the reaction of the permethyltitanocene complex 1 with water the dihydroxy complex CpTi(OH)2 ( 5 ) was formed. This product differs from the well‐known titanoxane Cp2TiOTiCp2 which was obtained by the reaction of the corresponding titanocene complex 3 with water. The reaction of the permethylzirconocene complex 2 with water gives the mononuclear alkenyl zirconocene hydroxide 6 . An analogous product was assumed as the first step in the reaction of the corresponding zirconocene complex 4 with water which ends up in a dinuclear zirconoxane. In the conversion of the permethylzirconocene complex 2 with carbon dioxide the mononuclear insertion product 7 was formed by coupling of carbon dioxide and the acetylene. In contrast, the corresponding zirconocene complex 4 affords, by an analogous reaction, a dinuclear complex. In additional experiments the known complex CpZr(η2‐PhC2SiMe3) ( 8 ) was prepared, starting from CpZrCl2 and Mg in the presence of PhC≡CSiMe3. This complex reacts with carbon dioxide resulting in a mixture of the regioisomeric zirconafuranones 9 a and 9 b . From these in the complex 9 a , having the SiMe3 group in β‐position to the metal, the Zr–C bond was quickly hydrolyzed by water to give the complex CpZr(OH)OC(=O)–C(SiMe3)=CHPh ( 10 a ) compared to complex ( 9 b ) which gives slowly the complex CpZr(OH)OC(=O)–CPh=CH(SiMe3) ( 10 b ).  相似文献   

17.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVII [1] [Co(g5‐Me5C5)(g3tBu2PPCH–CH3)] from [Co(g5‐Me5C5)(g2‐C2H4)2] and tBu2P–P=P(Me)tBu2 [Co(η5‐Me5C5)(η3tBu2PPCH–CH3)] 1 is formed in the reaction of [Co(η5‐Me5C5)(η2‐C2H4)2] 2 with tBu2P–P 4 (generated from tBu2P–P=P(Me)tBu2 3 ) by elimination of one C2H4 ligand and coupling of the phosphinophosphinidene with the second one. The structure of 1 is proven by 31P, 13C, 1H NMR spectra and the X‐ray structure analysis. Within the ligand tBu2P1P2C1H–CH3 in 1 , the angle P1–P2–C1 amounts to 90°. The Co, P1, P2, C1 atoms in 1 look like a „butterfly”︁. The reaction of 2 with a mixture of tBu2P–P=P(Me)tBu2 3 and tBu–C?P 5 yields [Co(η5‐Me5C5){η4‐(tBuCP)2}] 6 and 1 . While 6 is spontaneously formed, 1 appears only after complete consumption of 5 .  相似文献   

18.
1,2-Diphenyl-1,2-dimethyldisilanylene-bridged bis-cyclopentadienyl complex[η~5,η~5-C_5H_4PhMeSiSiMePh-C_5H_4]Fe_2(CO)_2(μ-CO)_2(1)was synthesized by a modified procedure,from which the trans-isomer 1b that was pre-viously difficult to obtain has been isolated for the first time.More interestingly,two new regio-isomers[η~5,η~5C_5H_4SiMe(SiMePh_2)C_5H_4]Fe_2(CO)_2(μ-CO)_2(2)and [η~5,η~5-C_5H_4Me_2SiSiPh_2C_5H_4]Fe_2(CO)_2(μ-CO)_2(3)were occa-sionally obtained during above process,the novel structures of which opened up new options for further study ofthis type of Si—Si bond-containing transition metal complexes.The molecular structure of 2 has been determinedby the X-ray diffraction method.  相似文献   

19.
The carboxylate compounds [Ti(η5‐C5H5)(η5‐C5H4{CMe2(CH2CH2CH?CH2)})(O2CCH2SXyl)2] (2; Xyl = 3,5‐Me2C6H3) and [Ti(η5‐C5H5)(η5‐C5H4{CMe2(CH2CH2CH?CH2)})(O2CCH2SMesl)2] (3; Mes 1 = 2,4,6‐Me3C6H2) were synthesized by the reaction of [Ti(η5‐C5H5)(η5‐C5H4{CMe2(CH2CH2CH?CH2)})Cl2] (1) with 2 equivalents of xylylthioacetic acid or mesitylthioacetic acid, respectively. Compounds 2 and 3 were characterized by spectroscopic methods. The cytotoxic activity of 1–3 was tested against human tumor cell lines from four different histogenic origins—8505C (anaplastic thyroid cancer), DLD‐1 (colon cancer) and the cisplatin sensitive A253 (head and neck cancer) and A549 (lung carcinoma)—and compared with those of the reference complex [Ti(η5‐C5H5)2Cl2] (R1) and cisplatin. Surprisingly, the cytotoxic activities of the carboxylate derivatives were lower than those of their corresponding dichloride analogue (1). However, complexes 1–3 were more active than titanocene dichloride against all the studied cells with the exception of complex 2 against A253 and A549 cell lines. DNA‐interaction tests were also carried out. Solutions of all the studied complexes were treated with different concentrations of fish sperm DNA, observing modifications of the UV spectra with intrinsic binding constants of 2.99 × 105, 2.45 × 105, and 2.35 × 105 M ?1 for 1–3. Structural studies based on density functional theory calculations of 2 and 3 were also carried out. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Polymeric Iodoplumbates – Synthesis and Crystal Structures of (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF, (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF, and (Me3N–C2H4–NMe3)2[Pb2I7]I (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ) and (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14] · DMF ( 2 ) have almost the same composition, but completely different structures. Both compounds are formed selectively depending on the reaction and crystallization conditions. In 2 the PbII atoms are coordinated either by six bridging I ligands in the two-dimensional [Pb5I14]4– network or by six DMF ligands in the [Pb(dmf)6]2+ cations. In contrast, (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ) contains non-coordinating I anions between the iodoplumbate layers. The iodoplumbate anions in 2 and 3 consist of face and corner sharing PbI6 octahedra, whereas in 1 PbI6 and PbI5(dmf) octahedra share common edges to form a one-dimensional polymeric section of the PbI2 structure. (Pr3N–C2H4–NPr3)[Pb6I14(dmf)2] · 4 DMF ( 1 ): Space group P1, a = 920.1(3), b = 1597.2(5), c = 1613.9(4) pm, α = 66.02(2), β = 84.53(2), γ = 85.99(2)°, V = 2156(1) · 106 pm3; (Pr3N–C2H4–NPr3)[Pb(dmf)6][Pb5I14]·DMF ( 2 ): Space group P21, a = 1201.21(9), b = 3031.1(2), c = 1294.96(9) pm, β = 108.935(7)°, V = 4459.8(5) · 106 pm3; (Me3N–C2H4–NMe3)2[Pb2I7]I ( 3 ): Space group Pnma, a = 2349.9(2), b = 1623.83(9), c = 980.75(7) pm, V = 3742.4(5) · 106 pm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号