首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crystalline poly(arylene ether nitrile) could be prepared by the polycondensation of 2,6-dihalobenzonitrile with resorcinol at 200°C in N-methylpyrrolidone in the presence of sodium carbonate. A reaction temperature of at least 200°C was necessary to attain high molecular weight polymer. Spectral data indicated that the polymer had the structure of a poly(meta-phenylene ether) with pendent nitrile groups on every other phenylene unit. Despite this structure, the crystallinity and the crystallization rate of the polymer were greater than those of the corresponding polymer with a para-linked structure. The glass transition temperature and the melting temperature of the polymer were almost the same as those of poly(etheretherketone) (PEEKTM). A series of other new poly(arylene ether nitriles) were also examined. The polymers derived from 4,4′-biphenol, dihydroxytetra-phenylmethane, dihydroxydiphenylsulfone, and 1,5-isoquinolinediol had high glass transition temperatures. The poly(arylene ether nitriles) exhibited excellent tensile strength compared with the corresponding ketone- or sulfone-containing polymers. Comparing the three different kinds of polymers containing the same bisphenol units, the order of glass transition temperature was found to be sulfone- > nitrile- > ketone-containing polymers, while the order of tensile strength was nitrile- > ketone- > sulfone-containing polymers. The excellent mechanical properties are attributable to dipole-dipole interactions of nitrile groups. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Novel poly(arylene ether)s with a rigid and zigzag 4,4″-o-terphenyldiyl structure, introduced into the polymer backbone were synthesized by nucleophilic displacement reaction of 4,4″-dihydroxy-o-terphenyl with several activated aromatic dihalides in virtually quantitative yields. The poly(arylene ether)s having high molecular weight show both good solubility in common organic solvents and high thermal stability up to 545°C. They are amorphous with glass transition temperatures of 160–200°C.  相似文献   

3.
New poly(arylene ether amide)s with trifluoromethyl pendent groups were prepared via nucleophilic nitro displacement reaction of AB‐type monomers. 4‐Nitro‐3‐trifluoromethyl‐[N‐(4‐hydroxyphenyl)]benzamide ( 3 ) and 4‐nitro‐3‐trifluoro‐methyl‐[N‐(3‐hydroxyphenyl)]benzamide ( 4 ) gave polymers with weight‐average molecular weights over 42 000 g/mol and glass transition temperatures of 269°C and 213°C, respectively. Both polymers were soluble in common organic solvents including THF, and formed transparent films upon casting.  相似文献   

4.
A series of new high molecular weight poly(arylene ether)s containing the 1,2-dihydro-4-phenyl(2H)phthalazinone moiety have been synthesized. The inherent viscosities of these polymers are in the range of 0.33–0.64 dL/g. They are amorphous and readily soluble in chloroform, DMF, and DMAc. The glass transition temperatures of the polymers range from 241 to 320°C and the 5% weight loss temperatures in nitrogen atmosphere range from 473 to 517°C. The hydroxy group in the monomer 1,2-dihydro-4-(4-hydroxyphenyl)(2H)phthalazin-1-one has been selectively transformed into the N,N′-dimethylthiocarbamate group, which was then rearranged to give the S-(N,N′-dimethylcarbamate) group via the Newman–Kwart rearrangement reaction. A series of poly(arylene thioether)s containing the 1,2-dihydro-4-phenyl(2H)phthalazinone moiety have also been synthesized via two types of reactions, a N C coupling reaction and a one-pot reaction between the S-(N,N′-dimethylcarbamate) and activated dihalo compounds, in diphenyl sulfone in the presence of a cesium carbonate and calcium carbonate mixture. These poly(arylene thioether)s also have high glass transition temperatures (ranging from 217–303°C) and high thermal stabilities. Compared with their poly(ether) analogs, the poly(arylene thioether)s have glass transition temperatures several degrees lower, which is attributed to the more flexible C S C bonds. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36 : 455–460, 1998  相似文献   

5.
Poly(arylene ether ketone)s containing imide units were prepared by the aromatic nucleophilic displacement reaction of the potassium salts of bisphenols with bis(4-fluorobenzoyl)phthalimides in N-methyl-2-pyrrolidone at elevated temperature. The polymers having inherent viscosities of 0.34–0.77 dL/g were obtained in 2 h. The polymers exhibited glass transition temperatures ranging from 216 to 268°C and decomposition temperatures (5% weight loss under air atmosphere) ranging from 450–570°C mainly depending on the bisphenols used in the polymer synthesis. The isothermal TGA measurements (400°C under air or nitrogen atmosphere) revealed that the 4,4'-biphenol- and hydroquinone-based poly(arylene ether ketone imide)s belong to a superior class of heat resistant polymers. The mechanical properties of these polymers are also described. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Novel sulfur‐containing biphenol monomers were prepared in high yields by the reaction of 4‐mercaptophenol with chloropyridazine or chlorophthalazine compounds. High‐molecular‐weight poly(arylene ether)s were synthesized by a nucleophilic substitution reaction between these sulfur‐containing monomers and activated difluoro aromatic compounds. The inherent viscosities of these polymers ranged from 0.34 to 0.93 dL/g. The poly(pyridazine)s exhibited glass‐transition temperatures greater than 165 °C. The poly(phthalazine)s showed higher glass‐transition temperatures than the poly(pyridazine)s. A polymer synthesized from a bisphthalazinebiphenol and bis(4‐fluorophenyl)sulfone had the highest glass‐transition temperature (240 °C). The thermal stabilities of the poly(pyridazine)s and poly(phthalazine)s showed similar patterns of decomposition, with no significant weight loss below 390 °C. The poly(phthalazine)s were soluble in chlorinated solvents such as chloroform, and the poly(pyridazine)s were soluble in dipolar aprotic solvents such as N,N′‐dimethylacetamide. The soluble poly(pyridazine)s and poly(phthalazine)s could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 262–268, 2007  相似文献   

7.
Novel thermally crosslinkable fluorine‐containing poly(arylene ether ketone)s comprised of 2,3,5, 6‐tetrafluoro‐1,4‐phenylene moiety were synthesized by the termination of polymer chain ends with propargyl ether groups in order to improve solvent resistance. Crosslinking reaction occurred over 250°C through the formation of both chromen ring and polyene structure. This structure change brought about not only the outstanding solvent resistance but also the increase in glass transition temperature (Tg). The cured films also exhibited excellent thermal stability, transparency and hydrophobicity derived from fluorine atoms. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
A series of new poly(arylene ether phenyl-s-triazine)s was prepared by the nucleophilic aromatic substitution polymerization of the potassium salt of bisphenols with 2,4-bis (halophenyl)-6-phenyl-s-triazine in N-methyl-2-pyrrolidone at elevated temperature. The polymers with inherent viscosities exceeding 0.5 were obtained after polymerization for 1 h using 2,4-bis(fluorophenyl)-6-phenyl-s-triazine as a monomer. The glass transition temperatures of the resulting polymers ranged from 200 to 260°C depending on the bisphenol used in the polymer synthesis. The poly(arylene ether phenyl-s-triazine)s demonstrated excellent thermal stabilities in excess of 490°C (5% weight loss in air). The isothermal TGA measurements (400°C under air or nitrogen atmosphere) revealed that the 4,4'-biphenol- and hydroquinone-based poly(arylene ether phenyl-s-triazine)s belong to the most superior class of heat resistant polymers, such as polyimide Kapton?. The mechanical properties of these polymers are also described. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Four new poly(arylene ether)s have been prepared by the reaction of N‐phenyl‐3,3‐bis(4‐hydroxyphenyl)phthalimidine (PA) with four different perfluoroalkylated monomers namely 1,3‐bis(4′‐fluoro‐3′‐trifluoromethyl benzyl) benzene, 4,4′‐bis(4′‐fluoro‐3′‐trifluoromethyl benzyl) biphenyl, 2,6‐bis(4′‐fluoro‐3′‐trifluoromethyl benzyl) pyridine, and 2,5‐bis(4′‐fluoro‐3′‐trifluoromethyl benzyl) thiophene. The poly(arylene ether)s were characterized by different spectroscopic, thermal, mechanical, and electrical techniques. The poly(arylene ether) containing quadriphenyl unit in the main chain showed very high glass transition temperature of 291°C and outstanding thermal stability upto 556°C for 10% weight loss under a 4:1 nitrogen:oxygen mixture. The polymers were soluble in a wide range of organic solvents. Transparent thin films of these polymers exhibited tensile strengths upto 75 MPa and elongation at break upto 32%. The films of these polymers showed low water absorption of 0.26%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Poly(arylene ether)s ( 3 ), ( 4 ) containing pendant benzoyl groups as precursors for novel polyxanthenes ( 7 ), ( 8 ) were prepared by nucleophilic substitution reaction of 2,5-difluoro-4-benzoylbenzophenone ( 1 ) or 2,5-difluoro-4-(4-dodecylbenzoyl)-4′-dodecylbenzophenone ( 2 ) with hydroquinone derivatives in the presence of potassium carbonate in N,N-dimethylacetamide. The polycondensation proceeded smoothly at 165°C and produced poly(arylene ether)s with inherent viscosities up to 0.80 dL/g. The novel polyxanthenes were synthesized via the reduction of poly(arylene ether)s followed by the Friedel-Crafts cyclization of diol polymers. The structure of the polyxanthenes was characterized by 1H-NMR and IR spectroscopies. Polyxanthene 8 was quite soluble in chloroform and THF. The 10% weight loss temperature of polyxanthene 7 was 510°C in nitrogen and it was 90°C higher than the corresponding poly(arylene ether) 3 . © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2267–2272, 1997  相似文献   

11.
Novel poly(arylene ether)s with sulfonic acid containing pendent groups were successfully synthesized by the nucleophilic displacement of aromatic dihalides with bisphenols in an aprotic solvent in the presence of excess potassium carbonate followed by sulfonation with chlorosulfonic acid. The sulfonation took place only at the controlled positions on the phenyl rings due to the novel bisphenol structures designed. The sulfonic acid group containing polymers were very soluble in common organic solvents, such as dimethyl sulfoxide, N,N′‐dimethylacetamide, and dimethylformamide, but swelled only slightly in water. These sulfonic acid group containing polymers were readily cast into tough and smooth films from organic solvents. The synthesized polymers had high glass‐transition temperatures of 171.0–240.7 °C and high molecular weights of 15,600–33,000 Da. These films could potentially be used as proton‐exchange membranes for fuel cells. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1779–1788, 2004  相似文献   

12.
Poly(arylene ether)s ( 3 ) containing pendant benzoyl groups were prepared by the aromatic substitution reaction of 2,5-difluoro-4-benzoylbenzophenone (2) with hydroquinone ( 1a ) and methylhydroquinone ( 1b ) in the presence of potassium carbonate in N,N-dimethylacetamide. The polycondensation proceeded smoothly at 165°C and produced poly(arylene ether)s with inherent viscosities up to 0.8 dL/g. The polymer ( 3b ) derived from methylhydroquinone was quite soluble in common organic solvents and could be processed into uniform films from solutions. On the other hand, the polymer ( 3a ) derived from hydroquinone was only soluble in pentafluorophenol and methanesulfonic acid and had a high crystallinity. These polymers showed 10% weight losses at around 420 and 490°C in nitrogen. Polymer 3b also showed good tensile strength and tensile moduli. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 605–611, 1997  相似文献   

13.
A new trifluoromethyl-activated AB monomer has been successfully synthesized by Pd-initiated coupling of 4-bromo anisole with 4-fluoro-3-trifluoromethylphenylboronic acid followed by demethylation. The monomer leads to a semifluorinated poly(arylene ether) by nucleophilic displacement polymerization reaction. The AB monomer has been further copolymerized with a corresponding AB 2 monomer to form the corresponding semifluorinated hyperbranched (hb) poly(arylene ether). The resulting linear and hb poly(arylene ether)s exhibited weight average molecular weight of 75700 and 144100 g/mol, respectively. The hb copolymer exhibited better solubility in different organic solvents compared to the linear poly(arylene ether). The polymers showed excellent thermal stability up to 522°C at 10% wt loss in air and glass transition temperatures as high as 187°C. The mechanical properties of the linear poly(arylene ether) film 1a exhibited tensile strength at break of 89 MPa, elongation at break of up to 3% and a Young’s modulus value of 2.66 GPa. The films of the polymers were hydrophobic in nature and showed water contact angle as high as 93.6°.  相似文献   

14.
A novel phosphonic acid containing bisphenol was successfully synthesized from phenolphthalein and m‐aminophenylphosphonic acid. A series of homo‐ and copoly‐(arylene ether)s containing phosphonic acid groups were prepared by solution nucleophilic polycondensation. These phosphonic acid containing polymers can readily be dissolved in common organic solvents, such as dimethyl sulfoxide, N‐methyl‐2‐pyrrolidinone, and N‐cyclohexylpyrrolidinone, and can be cast into tough and smooth films. The presence of phosphonic acid pendants in the poly‐(arylene ether)s was confirmed by NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and conductivity measurements. This is the first report on the attachment of phenylphosphonic acid groups as side chains to aromatic polyethers. These poly‐(arylene ether)s had very high glass‐transition temperatures ranging from 254 to >315 °C and high molecular weights. The conductivities of the synthesized polymers were analyzed by the Cole–Cole method, and they ranged from 10?5 to 10?6 Scm?1. The synthesized polymers also exhibited good solution processability. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3218–3226, 2001  相似文献   

15.
A series of poly(arylene ether)s were successfully prepared by aromatic, nucleophilic substitution reactions with various perfluoroalkyl‐activated bisfluoromonomers with 4,4′‐bishydroxybiphenyl and 4,4′‐bishydroxyterphenyl. 4,4′‐Bishydroxyterphenyl was synthesized through the Grignard coupling reaction of magnesium salt of 4‐bromoanisole with dibromobenzene followed by demethylation with pyridine–hydrochloride. The products obtained by the displacement of fluorine atoms exhibited good inherent viscosity, up to 0.77 dL/g, and number‐average molecular weights up to 69,300. These poly(arylene ether)s showed very good thermal stability, up to 548 °C for 5% weight loss according to thermogravimetric analysis under synthetic air, and high glass‐transition temperatures, up to 259 °C according to differential scanning calorimetry, depending on the exact repeat unit structure. These polymers were soluble in a wide range of organic solvents, such as N‐methylpyrrolidone, dimethylformamide, tetrahydrofuran, toluene, and CHCl3, and were insoluble in dimethyl sulfoxide and acetone. Thin films of these poly(arylene ether)s showed good transparency and exhibited tensile strengths up to 132 MPa, moduli up to 3.34 GPa, and elongations at break up to 84%, depending on their exact repeating unit structures. These values are comparable to those of high‐performance thermoplastic materials such as poly(ether ether ketone) (PEEK) and Ultem poly(ether imide) (PEI). These poly(arylene ether)s exhibited low dielectric constants. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 55–69, 2002  相似文献   

16.
A series of homo‐ and cocyclic(arylene disulfide) oligomers were synthesized under high dilution conditions by the catalytic oxidation of arylenedithiols with oxygen in the presence of a copper‐amine catalyst in DMAc. The aryl groups contained moieties such as sulfone, ether, and ketone. The free radical ring‐opening polymerization of these cyclic(arylene disulfide) oligomers led to the formation of linear poly(thio arylene)s. The homo‐ and cocyclic(arylene disulfide) oligomers were characterized by gradient high pressure liquid chromatography (HPLC), get permeation chromatography (GPC), 1H‐NMR, and differential scanning calorimetry (DSC) methods. These cocyclic(arylene disulfide) oligomers except those containing sulfone moiety had lower melt flow temperature as low as 140 °C and therefore could readily undergo free radical ring‐opening polymerization under mild conditions. The glass transition temperatures of these cocyclics ranged from 72.3 to 190.0 °C, while the glass transition temperatures of the polydisulfides derived from these cocyclics ranged from 78.4 to 194.5 °C. In this article, a new method of preparing arylene dithiols 4,4′‐oxybis(benzenethiol) and diphenylmethane‐4,4′‐dithiol is reported. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Bis(4-oxybenzoic acid) tetrakis(phenoxy) cyclotriphosphazene (IUPAC name: 4-[4-(carboxyphenoxy)-2,4,6,6-tetraphenoxy-1,3,5,2λ5,4λ5,6λ5-triazatriphosphinin-2-yl]oxy-benzoic acid) was synthesized and direct polycondensed with diphenylether or 1,4-diphenoxybenzene in Eaton's reagent at the temperature range of 80–120°C for 3 hours to give aromatic poly(ether ketone)s. Polycondensations at 120°C gave polymer of high molecular weight. Incorporation of cyclotriphosphazene groups in the aromatic poly(ether ketone) backbone greatly enhanced the solubility of these polymers in common organic polar solvents. Thermal stabilities by TGA for two polymer samples of polymer series ranged from 390 to 354°C in nitrogen at 10% weight loss and glass transition temperatures (Tg) ranged from 81.4 to 89.6°C by DSC. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1227–1232, 1998  相似文献   

18.
High molecular weight bisphenol A or hydroquinone‐based poly(arylene ether phosphine oxide/sulfone) homopolymer or statistical copolymers were synthesized and characterized by thermal analysis, gel permeation chromatography, and intrinsic viscosity. Miscibility studies of blends of these copolymers with a (bisphenol A)‐epichlorohydrin based poly(hydroxy ether), termed phenoxy resin, were conducted by infrared spectroscopy, dynamic mechanical analysis, and differential scanning calorimetry. All of the data are consistent with strong hydrogen bonding between the phosphonyl groups of the copolymers and the pendent hydroxyl groups of the phenoxy resin as the miscibility‐inducing mechanism. Complete miscibility at all blend compositions was achieved with as little as 20 mol % of phosphine oxide units in the bisphenol A poly(arylene ether phosphine oxide/sulfone) copolymer. Single glass transition temperatures (Tg) from about 100 to 200°C were achieved. Replacement of bisphenol A by hydroquinone in the copolymer synthesis did not significantly affect blend miscibilities. Examination of the data within the framework of four existing blend Tg composition equations revealed Tg elevation attributable to phosphonyl/hydroxyl hydrogen bonding interactions. Because of the structural similarities of phenoxy, epoxy, and vinylester resins, the new poly(arylene ether phosphine oxide/sulfone) copolymers should find many applications as impact‐improving and interphase materials in thermoplastics and thermoset composite blend compositions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1849–1862, 1999  相似文献   

19.
Several new co‐poly(arylene ether sulfone)s have been prepared by the reaction of 4,4′‐fluorodiphenyl sulfone (FDS) with different bisphenols namely 4,4′‐isopropylidenediphenol (BPA), 4,4′‐hexafluoroisopropylidenediphenol (6F‐BPA), and N‐phenyl‐3,3‐bis(4‐hydroxyphenyl)phthalimidine(PA). The homo‐poly(arylene ether sulfone)s are named as 1a, 2a, and 3a. The copolymers namely 2b, 2c, 2d and 3b, 3c, 3d have been prepared, respectively, on reaction of FDS with BPA or 6F‐BPA using different molar ratios of PA such as 25, 50, and 75. The poly(aryl ether sulfone)s 1a containing PA unit in the main chain showed a very high glass transition temperature of 280°C and an outstanding thermal stability up to 510°C for 5% weight loss under synthetic air. Depending on the mole% of PA, the glass transition temperatures of the copolymers can be varied. The polymers were soluble in a wide range of organic solvents. Transparent thin films of these polymers exhibited tensile strengths upto 84 MPa and Young's modulus up to 3.16 GPa. The films of these polymers showed low water absorption of 0.24%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A series of new poly(arylene ether)s, containing naphthalene, pyridine, and quinoline units have been prepared by solution condensation polymerization. The synthesis involves nucleophilic displacement of aromatic dihalides with aromatic potassium bisphenates in an anhydrous dipolar aprotic solvent at elevated temperatures. The polymers, having inherent viscosity from 0.24 to 1.32 dL/g, were obtained in quantitative yield, have excellent thermal stability as shown by 10% weight loss temperatures in nitrogen and air (above 450 and 430°C, respectively) and high glass transition temperatures (in the range of 150–220°C). The introduction of quinoline moieties in the polymer backbone positively influences the thermal properties, such as high Tg/Tm ratios. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号