首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl methacrylate was polymerized at 40°C with VOCl3–AlEt2Cl catalyst system in n-hexane. The rate of polymerization was proportional to catalyst and monomer concentration at Al/V ratio of 2 and overall activation energy of 9.25 kcal/mole support a coordinate anionic mechanism of polymerization. The catalytic activity and stereospecificity of this catalyst system is discussed in comparison with that of VOCl3–AlEt3 catalyst system.  相似文献   

2.
Methyl methacrylate was polymerized by triethylaluminum—cuprous chloride catalyst. A study of the polymerization kinetics indicated that the overall rate was represented by the equation, Rp = K[AlEt3] [CuCl]½ [M]2. The overall activation energy was 16.5 kcal/mole. From ESR measurement and the results of copolymerization of methyl methacrylate with styrene, it was suggested that the catalytic system has the character of a radical initiator. A polymerization scheme was also proposed.  相似文献   

3.
A number of TiCl4 catalysts supported on MgCl2 which was activated by the recrystallization method using different alcohols were prepared with ethyl benzoate or dibutyl phthalate as the internal electron donor. All the catalysts were characterized by BET, x-ray diffraction, and hydrolysis–GC analysis. Kinetics of polymerization of 1-octene was studied with three of the above catalysts (having different internal electron donors) activated by AlEt3. The rate of polymerization increased linearly with increasing temperature, and catalyst and monomer concentrations. From the Arrhenius plot, the overall activation energies of polymerization were determined and the dependence of rate on the AlEt3 concentration could be explained by the Langmuir-Hinshelwood mechanism. 13C-NMR was used to study the effect of internal electron donors on the % isotacticity of poly(1-octene). The catalytic activities of all the catalysts were compared in 1-octene polymerization. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The polymerization of styrene with VOCl3 in combination with AlEt3 and with Al(i-Bu)3 in n-hexane at 40°C. has been investigated. The rate of polymerization was found to be second order with respect to monomer in both systems. With respect to catalyst the rate of polymerization was first order for VOCl3–AlEt3 and second order for VOCl3-Al(i-Bu)3 systems. The activation energies for VOCl3–AlEt3 and VOCl3–Al(i-Bu)3 systems were 7.37 and 11.25 kcal./mole, respectively. The molecular weight of polystyrene in the AlEt3 system was considerably higher than that in the Al(i-Bu)3 system. The valence of vanadium obtained by a potentiometric method showed that the catalyst sites in the AlEt3 system are different in nature from those in the Al(i-Bu)3 system. The effect of diethylzinc as a chain-transfer agent in the AlEt3 system was also studied.  相似文献   

5.
A polymer-supported Ziegler–Natta catalyst, polystyrene-TiCl4AlEt2Cl (PS–TiCl4AlEt2Cl), was synthesized by reaction of polystyrene–TiCl4 complex (PS–TiCl4) with AlEt2Cl. This catalyst showed the same, or lightly greater catalytic activity to the unsupported Ziegler–Natta catalyst for polymerization of isoprene. It also has much greater storability, and can be reused and regenerated. Its overall catalytic yield for isoprene polymerization is ca. 20 kg polyisoprene/gTi. The polymerization rate depends on catalyst titanium concentration, mole ratio of Al/Ti, monomer concentration, and temperature. The kinetic equation of this polymerization is: Rp = k[M]0.30[Ti]0.41[Al]1.28, and the apparent activation energy ΔEact = 14.5 kJ/Mol, and the frequency factor Ap = 33 L/(mol s). The mechanism of the isoprene polymerization catalyzed by the polymer-supported catalyst is also described. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The effect of temperature on the rate of 1‐hexene polymerization over supported titanium–magnesium catalyst of composition TiCl4/D1/MgCl2 + AlR3/D2 (D1 is dibutyl phthalate, D2 is propyltrimethoxysilane, and AlR3 is an organoaluminum cocatalyst) is studied. The unusual data that the polymer rate decreases when temperature is increased from 30 to 70 °C are obtained. The 1‐hexene polymerization rate and the pattern of changes in polymerization rate with temperature depend on a combination of factors such as cocatalyst (AlEt3 or Al(i‐Bu)3) and presence/absence of hydrogen and an external donor in the reaction mixture. These factors differ in their effects on catalytic activity at different polymerization temperatures, so the temperature coefficient (Eeff) values calculated using the Arrhenius dependence of the polymerization rate on polymerization temperature vary greatly. The “normal” Arrhenius plot where polymerization rate increases with temperature is observed only for polymerization with the Al(i‐Bu)3 cocatalyst in the presence of hydrogen and without an external donor. Formation of high‐molecular‐weight polyhexene at low polymerization temperatures results in catalyst particle fragmentation, which may additionally contribute to the increase in polymerization rate as polymerization temperature is reduced.  相似文献   

7.
Kinetic studies were carried out on the polymerization of tetrahydrofuran with catalyst systems of aluminum alkyl–epichlorohydrin. As aluminium alkyl species AlEt3, AlEt3–H2O (1:0.1 to 1:1.0), and “oxyaluminum ethyl” were employed. The polymerizations with these catalysts are characterized by a mechanism of stepwise addition without chain transfer or termination, which is expressed by the kinetic relation Rp = Kp[P*] ([M]–[M]e), where [M] and [M]e are the instantaneous and equilibrium concentrations of monomer and [P*] is the concentration of propagating species calculated from the amount and molecular weight of the product polymer. The determination of the rate constant kp for these catalysts has shown that the polymerization rate varied considerably with the change of aluminum alkyl species, i.e., with the water-to-aluminum ratio, but the propagation rate constant itself varied very little. The variation of polymerization rate was, therefore, attributed primarily to the differences in concentration of the propagating species, i.e. the efficiency of the catalyst in forming propagating species. The catalyst efficiency was closely related to the acid strength of the aluminum alkyl species, which was estimated from the magnitude of shift of the xanthone carbonyl band in the infrared spectrum of its coordination complex with aluminum alkyl. The maximal catalyst efficiency was attained at about [H2O]/[AlEt3] = 0.75.  相似文献   

8.
Polymerizations of decene-1 were carried out from 0° to 70° at A/T = 167 and [M] = 0.75 M initiated by 0.17, 0.34, and 0.69 mM of Ti contained in the MgCl2/ethylbenzoate/p-cresol/AlEt3/TiCl4-AlEt3/methyl-p-toluate catalyst. The rate of polymerization is directly proportional to the catalyst concentration. About 12% of the Ti in the catalyst is initially active at 50°; they are 1.4%, 8.8%, and 9.4% at 0°, 25°, and 70°, respectively. The changes of Rp with temperature parallels the variations in the active site concentration. The decline of Rp with time has second-order plots with slopes which are inversely proportional to the catalyst concentration, but the rate constants for these deactivations are nearly the same for decene and propylene polymerizations. These results strongly support a mechanism of deactivation involving two adjacent sites in the catalyst particle surfaces. The rate constants of propagation and of chain transfer to AlEt3, the energetics for these processes, and MW and MW distribution data have been obtained.  相似文献   

9.
The kinetics of acetylene polymerization initiated by Ti(OBu)4/4AlEt3 catalyst was studied by radioquenching with C*O to count the number of active sites [C] and by CH3OT* to determine the total metal polymer bonds [MPB] and M?n of the polymer. The amount of quenching agent and time of reaction required and the kinetic isotope effect for CH3OT* were determined. The effects of Al/Ti ratio, catalyst aging, catalyst concentration, temperature, and monomer pressure on the polymerization were investigated. Detailed kinetic data on the variation of rate of polymerization, Rp, [C] [MPB], and M?n with time were obtained at 298 and 195°K. The results required the assumption that the catalytic species C, is initially active and within less than 30 min all are converted by bimolecular kinetics to a far less active species. Analysis of the data yielded rate constants of propagation and termination and their energies of activation. Estimates of chain transfer efficiency were obtained. The mechanisms for the propagation, termination, and transfer processes were discussed. By drawing on our earlier EPR results we propose probable structures for the catalytically active species.  相似文献   

10.
Isoprene was polymerized at 30°C with VCl4–AlEt2Br catalyst system in n-hexane. A linear dependence of rate of polymerization on the monomer and catalyst concentrations was found. The overall activation energy was 8.96 kcal/mole. Infrared spectra of polyisoprene showed the presence of cyclic structure, indicating a cationic mechanism of polymerization.  相似文献   

11.
The rate of polymerization with the VOCl3–AlEt2Br catalyst system at 30°C. in n-hexane reached a maximum at an Al/V molar ratio of 1.5. At this ratio, the rate of polymerization was first-order with respect to catalyst and second-order with respect to monomer concentrations. The apparent activation energy calculated was 6.4 kcal./mole. Diethylzine was found to act as a chain transfer agent. However, the molecular weights of polymers obtained were low. The possibility of bromide-containing catalyst sites acting in the termination reaction has been investigated. The average valence of vanadium is discussed in relation to molecular weights.  相似文献   

12.
Electron paramagnetic resonance (EPR) was used to study a MgCl2-supported, high-mileage olefin polymerization catalyst. Anhydrous Toho MgCl2 was the starting material. Treatment with HCl at an elevated temperature, ethyl benzoate by ball-milling, p-cresol, AlEt3, and TiCl4produced a catalyst that contained a single EPR observable Ti+3 species A, which was strongly attached to the catalyst surface, had a D3h symmetry, and no other Ti+3 ion in an immediately adjacent site. Species A constitutes only 20% of all the trivalent titaniums; the remainder is EPR-silent and may be attributed to those Ti+3 ions that have adjacent sites occupied by one or more Ti+3 ions. Activation with preformed AlEt3/methyl-p-toluate complexes produced a single Ti+3 species (C) with rhombic symmetry and displaying 27Al superhyperfin splitting which has attributes for a stereospecific active site. This species is unstable under polymerization conditions and is transformed to another species with axial symmetry and solubilization. Both processes could lead to catalyst deactivation and loss of stereospecificity. Catalysts activated by AlEt3 and methyl-p-toluate separately in various sequential orders produced a multitude of EPR-observable Ti+3 species with varying degrees of motional freedom deemed detrimental to stereospecific polymerization of α-olefins.  相似文献   

13.
A precise method for the determinations of Ti+2, Ti+3 and Ti+4 was developed. The CW-procatalyst before activation contains mostly Ti+4 ions with 6% Ti+3 and 4% Ti+2 ions. Activation with AlEt3 alone at room temperature reduced all the titaniums to lower valence states consisting of 71% Ti+3 and 29% Ti+2. Reduction is incomplete when methyl-p-toluate was present as external Lewis base during activation: at 25°C the distribution of Ti+4 : Ti+3 : Ti+2 is 36% : 25% : 38%; the distribution at 50°C is 37% : 22% : 40%. Aging of the activated catalyst caused little or no changes in the distribution of [Ti+n]; whereas the catalytic activity decays rapidly with aging. The aged catalysts have polymerization activity comparable to the decreased activity of the catalyst during a polymerization. The [Ti+n] was determined for the CW-catalyst during the course of a decene polymerization; they were found to be Ti+4 : Ti+3 : Ti+2 = 30% : 27% : 43%, which did not change with polymerization time. These results suggest that the reducibility of Ti+4 species by AlEt3 or 3AlEt3/MPT to different valence states is predicated by their structures. These species do not undergo further changes in their oxidation states during either aging or polymerization. Their decays probably involve nonreductive metathesis reactions like those known for zirconium alkyls. Possible structures for the stereospecific and nonspecific sites are proposed.  相似文献   

14.
The reactions between AlEt3 and the modifiers, promoters, and coactivators of a typical magnesium-chloride-supported, high-activity propylene polymerization catalyst were studied. Infrared, MS analysis of the gas evolved, and GC–MS of the hydrolysis products for the reaction between AlEt3 and p-cresol showed rapid and quantitative reactions with p-cresol either in the support or solution. The reaction products from AlEt3 and esters were hydrolyzed, acidified, and dehydrated. The resulting carbonyl and olefinic compounds were identified by GC–MS. Proton and carbon nuclear magnetic resonance (NMR) techniques were also used to study these reactions. The expected intermediates were found in the PMR and CMR spectra. The mechanisms of reactions were proposed. The results of this study showed that when AlEt3 and esters are used as coactivators reaction products that can significantly influence the performance of the catalyst are formed.  相似文献   

15.
Methyl methacrylate was polymerized at 40°C with the VCl4–AlEt3 catalyst system in n-hexane. The rate of polymerization was proportional to the catalyst and monomer concentration at Al/V ratio of 2, indicating a coordinate anionic mechanism of polymerization. NMR spectra were further used to confirm the mechanism of polymerization and stability of active sites responsible for isotacticity.  相似文献   

16.
Kinetics of the polymerization of methyl methacrylate with the VOCl3? AlEt3 catalyst system at 40°C in n-hexane have been studied. A linear dependence of rate of polymerization on the monomer and catalyst concentrations as well as an overall activation energy of 5.87 kcal/mole were found. Characterization of the structure of the polymer by NMR spectra revealed the presence of stereoblock units. The mechanism of polymerization is discussed in relation to the kinetic data obtained.  相似文献   

17.
The polymerization of acrylonitrile with the homogeneous catalyst system of VCl4–AlEt3 in acetonitrile at 40°C has been investigated. The rate of polymerization is found to be first-order with respect to monomer and inversely proportional to the catalyst concentration. The overall activation energy for this catalyst system is 10.97 kcal/mole. The inverse proportionality of rate of polymerization with the catalyst concentration is attributed to the permanent complex formation between the catalyst complex and acrylonitrile, and a reaction scheme is proposed.  相似文献   

18.
The polymerization of vinyl chloride was carried out by using a catalyst system consisting of Ti(O-n-Bu)4, AlEt3, and epichlorohydrin. The polymerization rate and the reduced viscosity of polymer were influenced by the polymerization temperature, AlEt3/Ti(O-n-Bu)4 molar ratios, and epichlorohydrin/Ti(O-n-Bu)4 molar ratios. The reduced viscosity of polymer obtained in the virtual absence of n-heptane as solvent was two to three times as high as that of polymer obtained in the presence of n-heptane. The crystallinity of poly(vinyl chloride) thus obtained was similar to that of poly(vinyl chloride) produced by a radical catalyst. It was concluded that the polymerization of vinyl chloride by the present catalyst system obeys a radical mechanism rather than a coordinated anionic mechanism.  相似文献   

19.
Hydrogen (pH2 = 72 torr) increases the rate of propylene polymerization by a MgCl2/ethyl benzoate/p-cresol/AlEt3/TiCl4-AlEt3/methyl-p-toluate catalyst (CW-catalyst) by two-to three-fold which corresponds closely with the increase in the number of active sites as counted by radiolabeling with tritiated methanol. The oxidation states of titanium in decene polymerizations by the CW-catalyst were determined as a function of time of polymerization (tp). In the absence of H2, all [Ti+n] for n = 2, 3, 4 remain constant during a batch polymerization. In the presence of H2 and within 5 min of tp, [Ti+2] decreases by an amount, corresponding to 15% of the total titanium and [Ti+3] increases by the same amount, while [Ti+4] is not changed. Therefore, three-fourths of the H2 activation result from oxidative addition processes. The remaining one-fourth of the H2 activation may be attributed to the activation of previously deactivated Ti+3 ions by hydrogenolysis. Monomer converts some of the EPR silent Ti+3 sites to EPR observable species resulting in their activation.  相似文献   

20.
The ring‐opening polymerization (ROP) of p‐dioxanone (PDO) under microwave irradiation with triethylaluminum (AlEt3) or tin powder as catalyst was investigated. When the ROP of PDO was catalyzed by AlEt3, the viscosity‐average molecular weight (Mv) of poly(p‐dioxanone) (PPDO) reached 317,000 g mol?1 only in 30 min, and the yield of PPDO achieved 96.0% at 80 °C. Tin powder was successfully used as catalyst for synthesizing PPDO by microwave heating, and PPDO with Mv of 106,000 g mol?1 was obtained at 100 °C in 210 min. Microwave heating accelerated the ROP of PDO catalyzed by AlEt3 or tin powder, compared with the conventional heating method. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3207–3213, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号