首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Insertion of a Terminal Halogeno Ligand into Diorgano-bridged Dirhenium and Rhenium-Molybdenum Complex Anions in the Presence of an Amidin Cation and the Isomerization Processes The equimolar reaction of in situ generated anion Anions Re2(μ-PCy2)(CO)8? (Re? Re) in the presence of a steric expansive amidine cation DBUH+ with bromine and iodine in tetrahydrofuran solution gave the two isomers Re2(PCy2)(CO)8X (Re? Re) and Re2(μ-PCy2)(μ-X)(CO)8 (X = Br, I), of which the isomer with a terminal X ligand as major product was formed under maintenance of the Re? Re bond. The monotropic isomerization process of Re2(μ-PCy2)(CO)8I runs thermically relative slowly, but more rapid in photochemical and electrochemical processes. The analogeous reaction of the heterometallic anion ReMo(η5-C5H5)(μ-PPh2)(CO)6? with iodine delivers opposite to the former reaction mainly the bridged isomer ReMo(η5-C5H5)(μ-PPh2μ-I)(CO)6 besides ReMo(η5-C5H5)(μ-PPh2)(CO)6I. The obtained complexes were characterized by means of v(CO) and 31P NMR spectroscopic measurements. Single-crystal analyses led to the subsequent metal—metal bond lengths: Re? Re of 308.0(1) pm in Re2(μ-PCy2)(CO)8Br and Re? Mo of 313.6(1) pm in ReMo(η5-C5H5)(μ-PPh2)(CO)6I.  相似文献   

2.
Synthesis of Carboxylate Substituted Rhenium Gold Metallatetrahedranes Re2(AuPPh3)2(μ-PCy2)(CO)71-OC(R)O) (R = H, Me, CF3, Ph, 3,4-(OMe)2C6H3) The reaction of the in situ prepared salt Li[Re2(μ-H)(μ-PCy2)(CO)7(ax-C(Ph)O)] ( 2 ) with 1,5 equivalents of monocarboxylic acid RCOOH (R = H ( 4 a ), Me ( 4 b ), CF3 ( 4 c ), Ph ( 4 d ), 3,4-(OMe)2C6H3 ( 4 e ) in tetrahydrofruan (THF) solution at 60 °C gives within 4 h under release of benzaldehyde (PhCHO) the η1-carboxylate substituted dirhenium salt Li[Re2(μ-H)(μ-PCy2)(CO)71-OC(R)O)] (R = H ( 4 a ), Me ( 4 b ), CF3 ( 4 c ), Ph ( 4 d ), 3,4-(OMe)2C6H3 ( 4 e )) in almost quantitative yield. The lower the pKa value of the respective carboxylic acid the faster the reaction proceeds. It was only in the case of CF3COOH possible to prove the formation of the hydroxycarbene complex Re2(μ-H)(μ-PCy2)(CO)7(=C(Ph)OH) ( 5 ) prior to elimination of PhCHO. The new compounds 4 a–4 e were only characterized by 31P NMR and ν(CO) IR spectroscopy as they are only stable in solution. They are converted with two equivalents of BF4AuPPh3 at 0 °C in a so-called cluster expansion reaction into the heterometallic metallatetrahedrane complexes Re2(AuPPh3)2(μ-PCy2)(CO)71-OC(R)O) (R = H ( 7 a ), Me ( 7 b ), CF3 ( 7 c ), Ph ( 7 d ), 3,4-(OMe)2C6H3 ( 7 e )) (yield 47–71% ). The expected precursor complexes of 7 a–7 e Li[Re2(AuPPh3)(μ-PCy2)(CO)71-OC(R)O] ( 8 ) were not detected by NMR and IR spectroscopy in the course of the reaction. Their existence was retrosynthetically proved by the reaction of 7 b with an excess of the chelating base TBD (1,5,7-Triazabicyclo[4.4.0]dec-5-en) forming [(TBD)xAuPPh3][Re2(AuPPh3)(μ-PCy2)(CO)71-OC(Me)O] ( 8 b ) in solution. The η1-bound carboxylate ligand in 7 a–7 e can photochemically be converted into a μ-bound ligand in Re2(AuPPh3)2(μ-PCy2)(μ-OC(R)O)(CO)6 (R = H ( 9 a ), Me ( 9 b ), CF3 ( 9 c ), Ph ( 9 d ), 3.4-(MeO)2C6H3 ( 9 e )) under release of one equivalent CO. All isolated cluster complexes were characterized and identified by the following analytical methods: elementary analysis, NMR (1H, 31P) spectroscopy, ν(CO) IR spectroscopy and in the case of 7 d and 9 b by X-ray structure analysis.  相似文献   

3.
Deprotonation of Mn2(μ-H)(μ-PR2)(CO)8 (R = Ph Cy) for Synthesis of Heteronuclear Manganese-Gold Clusters with Mn2Aun Cores (n = 1–3) The dimanganese complexes Mn2(μ-H)(μ-PR2)(CO)8 (R = Ph, Cy) have been deprotonated with 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) in tetrahydrofuran solution at 20°C to give the anions [Mn2(μ-PR2)(CO)8]?, which were isolated as tetraethylammonium salts. Both dimanganese complexes and the related anions were measured by cyclic voltammetry. The treatment of the aforementioned dimanganese complexes in thf solution with Lir' (R =Me, Ph) and subsequently with PPh3AuCl gave at 20°C three types of products: Mn2(μ-PR2(CO)8(AuPPh3),Mn2(μ-PR2)(μ-C(R′)O)(CO)6-(AuPPh3)2 and Mn2(μ-PR2)(CO)6(AuPPh3)3. The newly prepared substances were characterized by means of IR-, UV/VIS, 31P NMR data. The results of single X-ray analyses showed for the three-membered metal ring compound Mn2(μ-PPh2)(CO)8(AuPPh3) an uni-fold bridged σ(Mn? Mn) bond length of 306.7(3) pm, the metallatetrahedron complex Mn2(μ-PPh3)(μ-C(Ph)O(CO)6(AuPPh3)2 a twofold bridged σ(Mn? Mn) bond length of 300.6(4) pm and the trigonal-bipyramidal cluster Mn2(μ-Pph2)(CO)6(AuPPh3)3 an uni-fold bridged π(Mn? Mn) bond length of 274.7(3) pm. The Mn? Au bonds of these substances are accompanyied by semi-bridging CO ligands which are signified through short Au…C contact lengths in the range of 251 to 270 pm. In the substance with the Mn2Au2 metallatetrahedron core exists, additionally, such a contact with the acylic C atom of C(Ph)O bridging group of 263.4(18) pm. Such contact lengths were compared for corresponding dimanganese and dirhenium complexes.  相似文献   

4.
Transition Metal Substituted Acylphosphanes and Phosphaalkenes. 17. Synthesis and Structure of the μ-Isophosphaalkyne Complexes [(η5-C5H5)2(CO)2Fe2(μ-CO)(μ-C?PC6H2R3)] (R = Me, iPr, tBu) . Condensation of (η5-C5H5)2(CO)2Fe2(μ-CO)(μ-CSMe)}+SO3CF3? ( 6 ) with 2,4,6-R3C6H2PH(SiMe3) ( 7 ) ( a : R = Me, b : R = iPr, c : R = tBu) affords the complexes (η5-C5H5)2(CO)2Fe2(μ-CO)(η-C?PC6H2R3-2,4,6) ( 9 a–c ) with edge-bridging isophosphaalkyne ligands as confirmed by the x-ray structure analysis of 9 a .  相似文献   

5.
Reaction of [MoCo(CO)5(PPh3)25-C5H5)] (1) with diphenylacetylene in tetrahydrofuran at 50 °C yielded two heterobimetallic compounds, [MoCo(CO)4.(PPh3){μ-PhC ? CPh}(η5-C5H5)] (4) and [MoCo(CO)5{μ-PhC ? CPh} (η5-C5H5)] (5). However, an unexpected product, Co(CO)2(μ-CO)(μ:η24-C4Ph4)Co(CO)2(PPh3) (6), was observed while attempting to grow the crystals for structural determination of 4. The X-ray crystal structure of 6 was determined: triclinic, $ {\rm P}\bar 1 $, a = 11.654(2) Å, b = 12.864(2) Å, c = 13.854(2) Å, α = 89.67(2)°, β = 86.00(2)°, γ= 83.33(2)°, V = 2057.9(6) Å3 Z=2. In 6, two cobalt fragments are at apical and basal positions of the pseudo-pentagonal pyramidal structure, respectively. The electron count for the apical cobalt fragments is 20, which is rather unusual. It is believed that 6 was formed after the fragmentation and recombination of the fragmented species of 4.  相似文献   

6.
Reaction of MoCo(CO)5(PPh3)25-C5H5) (1a) with trimethylsilylacetylene in tetrahydrofuran at 58° C yielded two acetylene bridged heterobimetallic compounds, MoCo(CO)4(PPh3){μ-HC?CSiMe3}(η5-C5H5) (4) and MoCo (CO)5{μ-HC?CSiMe3}(η5-C5H5)(5). (4) was characterized by mass, infrared, 1H, 13C and 31P NMR spectra. The X-ray crystal structure of (4) was determined:triclinic, P-1, a=8.821(1) Å, b=11.315(3) Å, c=17.029(2) Å, α=70.73(1)°, β=78 .72(1)°, γ=86.10(2)°,V =1573.4(6) Å3, Z=2, R = 3.92%,Rw = 6.06% for 4285 (F > 4σ (F)) observed reflections. The core of this molecule is a quasi-tetrahedron containing Mo, Co and two carbons of acetylene. The triphenylphosphine ligand is attached to cobalt rather than molybdenum center.  相似文献   

7.
X-Ray Structure Analysis of a Carbene Addition Product to Dicarbonyl-η5-methylcyclopentadienyltetrahydrofuranmanganese, μ-Cyclobuta[1, 2-a:3, 4-a′] dicyclopentene-bis-(dicarbonyl-η5-methylcyclopentadienylmanganese),[( η5-C5H4CH3)Mn(CO) 2]22-C10H8) The crystal and molecular structure of the title compound has been determined by means of X-ray structure analysis. The species is the first example of an oligocyclic dicarbene stabilized by complex formation.  相似文献   

8.
Preparation of μ-Hydrido-μ-diphenylphosphido-bis(tetracarbonylrhenium) · 1/2 Xylene and Molecular Structure of the Derivative Re2(CO)6(PPh3)2(μ-H)(μ-PPh2) (Ph = C6H5) The reaction of dirhenium decacarbonyl with diphenylphosphine in xylene solution gave at 190–200°C in a glas tube crystals of Re2(CO)8(μ-H)(μ-PPh2) · 1/2 C8H10. The obtained adduct was reacted in the same solvent with an excess of triphenylphosphine to the derivative Re2(CO)6(PPh3)2(μ-H)(μ-PPh2). Both diamagnetic dirhenium compounds with μ-H atom and μ-PPh2 group were characterized by 1H and 31P spectroscopic measurements. The molecular structure of the derivative was acertained by a single crystal X-ray analysis. Its result showed a three-membered Re2(μ-P) ring as central molecular fragment. At these Re central atoms were attached two PPh3 ligands in an unprefered cis-arrangement due to sterical reasons. A thermodynamic transinfluence of the (μ-P)? Re bond favoured the found positions of the PPh3 ligands.  相似文献   

9.
Transition Metal-substituted Acylphosphanes and Phosphaalkenes. 22. Insertions of Hexafluoroacetone into the PX-Bond of Metallophosphanes (η5-C5Me5)(CO)2M? PX2 (M = Fe, Ru; X = Me3Si, Cl). Structure Determination of (η5-C5Me5)(CO)2Fe? P(SiMe3)C(CF3)2(OSiMe3) Reaction of the metallophosphanes (η5-C5Me5)(CO)2M? P(SiMe3)2 ( 1a : M = Fe; 1b : M = Ru) with hexafluoroacetone (HFA) afforded the complexes (η5-C5Me5)(CO)2M? P(SiMe3)C(CF3)2(OSiMe3) ( 2a, b ). The attempted synthesis of a metallophosphaalkene from 2a by thermal elimination of hexamethyldisiloxane failed. The acid catalyzed hydrolysis of 2a afforded compound (η5-C5Me5) · (CO)2Fe? P(H)C(CF3)2(OSiMe3) ( 3 ). Hexafluoracetone and (η5-C5Me5)(CO)2Fe? PCl2 ( 4 ) under-went reaction to give the metallochlorophosphan (η5-C5Me5) · (CO)2Fe? P(Cl)? O? C(CF3)2Cl ( 5 ). Constitutions and configurations of the compounds ( 2–5 ) were established by elemental analyses and spectroscopic data (IR, 1H-, 13C, 19F-, 29Si-, 31P-NMR, MS). The molecular structure of 2a was determined by x-ray diffraction analysis.  相似文献   

10.
The reaction of Na[η5-C5H5Fe(CO)2] with large excess of SO2 in THF at ?78°C followed by warming to room temperature affords an iron—dithionite complex, (η5-C5H5)(CO)2FeS(O)2S(O)2Fe(CO)25-C5H5).  相似文献   

11.
The complex η55-(CO)3Mn(C5H4-C5H4)(CO)2Fe-η15-C5H4Mn(CO)3 was synthesized by the reaction of η5-Cp(CO)2Fe-η15-C5H4Mn(CO)3 with BunLi (THF, ?78 °C) and then with anhydrous CuCl2. The complex μ-(C≡C)[C5H4(CO)2Fe-η15-C5H4Mn(CO)3]2 was prepared by the reaction of η5-IC5H4(CO)2Fe-η15-C5H4Mn(CO)3 with Me3SnC≡CSnMe3 (2:1) in the presence of Pd(MeCN)2Cl2.  相似文献   

12.
On the Reactivity of Disilylarsenido Iron Complexes towards Carbonyl Chlorides: The First Arsaalkenyl- and Diacylarsenido Complexes. X-Ray Structure Analysis of Z-[(η5-C5H5)(CO)2Fe? As?C(OSiMe3)(t-Bu)] The reaction of equimolar amounts of (η5-C5H5)(CO)2FeAs(SiMe3)2 ( 1a ) with the carbonyl chlorides RC(O)Cl (R = t-Bu, 2,4,6-Me3C6H2 and 2,4,6-t-Bu3C6H2) yields the arsaalkenyl complexes Z-[(η5-C5H5)(CO)2Fe? As?;C(OSiMe3)R ( 2–4 )]. The diacylarsenido complexes (η5-C5H5)(CO)2Fe? As[C(O)R]2 ( 5, 6 ) are generated by treatment of 1a with two equivalents of pivaloyl chloride or mesitoyl chloride, respectively. The As?C-double bond length of 2 (1.821(2) Å) was determined by single crystal x-ray analysis.  相似文献   

13.
The complex (η5-C5H4CH3)Mn(NO)(PPh3)I has been prepared by the reaction of NaI with [(η5-C5H4CH3)Mn(NO)(CO)(PPh3)]+ and also by the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI followed by PPh3. This iodide compound reacts with NaCN to yield (η5-C5H4CH3)Mn(NO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(PPh3)(CNC2H5)]+. Both [(η5-C5H4CH3)Mn(NO)(CO)2]+ and [(η5-C5H4CH3)Mn(NO)(PPh3)(CO)]+ react with NaCN to yield [(η5-C5H4CH3)Mn(NO)(CN)2]?. This anion reacts with Ph3SnCl to yield cis-(η5-C5H4CH3)Mn(NO)(CN)2SnPh3 and with [(C2-H5)3O]BF4 to yield [(η5-C5H4CH3)Mn(NO)(CNC2H5)2]+. The reaction of (η5-C5-H4CH3)Mn(NO)(PPh3)I with AgBF4 in acetonitrile yields [(η5-C5H4CH3)Mn-(NO)(PPh3)(NCCH3)]+. The complex (η5-C5H4CH3)Mn(NO)(CO)I, produced in the reaction of [(η5-C5H4CH3)Mn(NO)(CO)2]+ with NaI, is not stable and decomposes to the dimeric complex (η5-C5H4CH3)2Mn2(NO)3I for which a reasonable structure is proposed. Similar dimers can be prepared from the other halide salts. The reaction of (η7-C7H7)Mo(CO)(PPh3)I with NaCN yields (η7-C7-H7)Mo(CO)(PPh3)CN which is ethylated by [(C2H5)3O]BF4 to yield [(η7-C7H7)-Mo(CO)(PPh3)(CNC2H5)]+. The interaction of this molybdenum halide complex with AgBF4 in acetonitrile and pyridine yields [(η7-C7H7)Mo(CO)(PPh3)-(NCCH3)]+ and [(η7-C7H7)Mo(CO)(PPh3)(NC5H5)]+, respectively. Both (η5-C5-H4CH3)Mn(NO)(PPh3)I and (η7-C7H7)Mo(CO)(PPh3)I are oxidized by NOPF6 to the respective 17-electron cations in acetonitrile at ?78°C but revert to the neutral halide complex at room temperature. This result is supported by electrochemical data.  相似文献   

14.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

15.
Molecular and Crystal Structures of (CO)4W(μ-S-t-C4H9)2W(CO)4, η7-C7H7W(μ-SC6H4CH3)3W(CO)3 and η7-C7H7W(μ-S-n-C4H9)3W(CO)(μ-S-n-C4H9)2W(CO)4 The molecular structures of the two binuclear complexes (CO)4W(μ-S-t-C4H9)2W(CO)4 and η7-C7H7W(μ-SC6H4CH3)3W(CO)3 and of the tungsten cluster η7-C7H7W(μ-S-n-C4H9)3W(CO)-(μ-S-n-C4H9)2W(CO)4 respectively are described. In the nonlinear trinuclear cluster the central tungsten atom is connected to the two tungsten atoms by two and three μ-S-n-C4H9 bridges respectively and additionally by one W? W bond each. The coordination sphere of the W atoms is completed by a η7-C7H7 ring and four CO groups respectively; the central tungsten carries an additional CO group.  相似文献   

16.
Phosphido- and Arsenido-bridged Dinuclear Complexes. Synthesis and Molecular Structure of (η5-C5H4R)2Zr{μ-P(SiMe3)2}2M(CO)4 (R = Me, M = Cr; R = H, M = Mo) and Synthesis of (η5-C5H5)2Zr{μ-As(SiMe3)2}2Cr(CO)4 The reaction of (η5-C5H4R)2Zr{E(SiMe3)2}2 with M(CO)4(NBD) (NBD = norbornadiene) yields the dinuclear phosphido- or arsenido-bridged complexes (η5-C5H4R)2Zr{μ-E(SiMe3)2}2M(CO)4 (R = Me, E = P, M = Cr ( 1 ); R = H, E = P, M = Mo ( 2 ); R = H, E = As, M = Cr ( 3 )). No formation of dinuclear complexes was observed in the reaction of (η5-C5H4Me)2Zr{P(SiMe3)2}2 with Ni(PEt3)4, Ni(CO)2(PPh3)2 or with NiCl2(PPh3)2 in the presence of Mg. Complexes 1 – 3 were characterised spectroscopically (i. r., n. m. r., m. s.), and X-ray structure investigations were carried out on 1 and 2 . The central four-membered ZrP2M ring is slightly puckered (dihedral angle between planes ZrP2/CrP2 14.7°, ZrP2/MoP2 14.2°). The Zr? P bond lengths are equivalent ( 1 : Zr? P1 2.654(4), Zr? P2 2.657(4) Å; 2 : Zr? P1 2.6711(9), Zr? P2 2.6585(7) Å), as are the M? P bond lengths (M = Cr ( 1 ): Cr? P1 2.513(4), Cr? P2 2.502(4) Å; M = Mo ( 2 ): Mo? P1 2.6263(7), Mo? P2 2.6311(10) Å). The long Zr ··· M distances of 3.414 Å (M = Cr ( 1 )) and 3.461 Å (M = Mo ( 2 )) indicate the absence of a metal-metal bond.  相似文献   

17.
Treatment of the μ-alkylidyne clusters [Fe2W(μ3-CC6H4Me-4)(μ-CO)- (CO)8(η-C5H5)] and [Co2W(μ3-CMe)(CO)8(η-C5H5)] with PPh2H affords a series of new μ-phosphido-μ-hydrido alkylidyne complexes which undergo protonation with HBF4·Et2O to give cationic derivatives. The X-ray structure of [Co2W(μ-H)(μ3-CMe)(μ-PPh2)(CO)6(η-C5H5)] has been determined.  相似文献   

18.
The ethyne-derived demetallocycle [Ru2(CO) (μ-CO){μ-C(O)C2H2}(η-C5H5)2 isomerises in boiling toluene to yield the μ-vinylidene complex [Ru2(CO)2(μ-CO)(μ-CCH2) (η-C5H5)2], which on protonation with dry HBF4 provides the μ-carbyne complex [Ru2(CO)2(μ-CO)(μ-CCH3)(η-C5H5)2][BF4]; the structure of each product has been determined by X-ray diffraction. The μ-carbyne cation is attacked by hydride to produce the μ-methylcarbene complex [Ru2(CO)2(μ-CO)(μ-CHCH3)(η-C5H5)2].  相似文献   

19.
Selective Preparation of Twofold Diorganophosphido-bridged Metallatetrahedranes [Re2(MPR3)2(μ-PR2)2(CO)6] with Re2M2 Metal Core (M = Au, Ag) The reaction of the in situ prepared salt Li[Re2(AuPR)(μ-PR2)(CO)7Cl] (R = R′ = Cy ( 1 a ), R = Cy, R′ = Ph ( 1 b ), R = Ph, R′ = Cy ( 1 c ), R = Ph, R′ = Et ( 1 d ), R = Ph, R′ = Ph ( 1 e )) with one equivalent HPR in methanolic solution at room temperature yields the neutral cluster complexes [Re2(AuPR)(μ-PR2)(CO)7(ax-HPR) (R = R′ = R″ = Cy ( 2 a ), Ph ( 2 b ), R = R′ = Cy, R″ = Et ( 2 c ), R = Cy, R′ = R″ = Ph ( 2 d ), R = Cy, R′ = Ph, R″ = Et ( 2 e ), R = R″ = Ph, R′ = Et ( 2 f ), R = Ph, R′ = Cy, R″ = Et (2 g)). Photochemically induced these complexes react in the presence of the organic base DBU in THF solution to give the doubly phosphido bridged anions Li[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6], which were characterized as salts PPh4[Re2(AuPR)(μ-PR2)(μ-PR)(CO)6] (R = R′ = R″ = Ph ( 3 a ), R = R′ = Ph, R″ = Cy ( 3 b ), R = Ph, R′ = Cy, R″ = Et ( 3 c ), R = R″ = Ph, R′ = Et ( 3 d )). These precursor complexes 3 then react with one equivalent of ClMPR (M = Au, Ag) to doubly phosphido bridged metallatetrahedranes [Re2(MPR3)2(μ-PR2)(μ-PR)(CO)6] (M = Au, R = R′ = R″ = Ph ( 4 a ), M = Au, R′ = Et, R = R″ = Ph ( 4 b ), M = Au, R = R′ = Ph, R″ = Cy ( 4 c ), M = Au, R = Cy, R′ = Ph, R″ = Et ( 4 d ), M = Ag, R = R′ = R″ = Ph ( 4 e )). All isolated cluster complexes were characterized and identified by the following analytical methods: NMR- (1H, 31P) and ν(CO) IR-spectroscopy and, additionally, complexes 2 b , 4 a and 4 e by X-ray structure analysis.  相似文献   

20.
The crystal structure of the molybdenum half sandwich alkali salt [Li(TMEDA)2][Mo(η5-C5H5)(CO)3] shows the occurrence of a separated ion pair in the solid state. Furthermore, the crystal structures of the long known organotin complexes [Mo(η5-C5H5)(SnMe3)(CO)3], [{Mo(η5-C5H5)(CO)3}2SnMe2] and [Mo(η5-C5H5)(SnMeCl2)(CO)3] have been recorded. The chlorination of [Mo(η5-C5H5)(SnMe3)(CO)3] with SnCl4 is presented as an improved synthetic access to [Mo(η5-C5H5)(SnMeCl2)(CO)3]. Finally, the reaction of Li[Mo(η5-C5H5)(CO)3] with tBu2(Cl)Sn–Sn(Cl)tBu2 leads to the novel molybdenum distannane complex [Mo(η5-C5H5){SntBu2-Sn(Cl)tBu2}(CO)3], which is fully characterized by NMR, elemental and X-ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号