首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel bis(phenoxy)phthalimidine-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 3,3-bis[4-(4-aminophenoxy)phenyl]phthalimidine (BAPP) with various aromatic bis(trimellitimide)s in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III , having inherent viscosities up to 1.36 dL/g, were obtained in quantitative yields. All resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 267–322°C and the 10% weight loss temperatures were above 490°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III′ prepared from 3,3-[4-(4-trimellitimidophenoxy)phenyl]-phthalimidine and various aromatic diamines. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Fifteen bis(phenoxy) fluorene-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 9,9-bis[4-(4-aminophenoxy)phenyl]fluorene (BAPPF) with var-ious aromatic bis(trimellitimide)s II in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III having inherent vis-cosities up to 1.45 dL/g were obtained in quantitative yields. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 263–315°C and the 10% weight loss temperatures were above 510°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III ′ prepared from 9,9-[4-(4-trimellitimidophenoxy)phenyl]fluorene and various aromatic diamines. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
New bis(phenoxy)naphthalene-containing poly(amide-imide)s having an inherent viscosity in the range of 0.62–1.09 dL/g were prepared by the direct polycondensation of 1,5-bis(4-trimellitimidophenoxy) naphthalene ( I ) and various aromatic diamines using triphenyl phosphite and pyridine as condensing agents in N-methyl-2-pyrrolidone (NMP) in the presence of calcium chloride. The diimide-diacid (I) was prepared by the condensation of 1,5-bis(4-aminophenoxy) naphthalene and trimellitic anhydride. Most of the polymers were soluble in aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc), and afforded transparent, flexible and tough films upon casting from DMAc solutions. Measurements of wide-angle X-ray diffraction revealed that those polymers containing p-phenylene or oxyphenylene groups were characterized as crystalline polymers. Tensile strength and initial moduli of the polymer films ranged from 61–86 MPa and 1.83–2.21 GPa, respectively. Glass transition temperatures of the polymers were in the range of 231–340°C. The melting points of the crystalline polymers ranged from 375–430°C. The 10% weight loss temperatures were above 512°C in nitrogen and 481°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
The new polymer-forming diimide-diacid, 2,3-bis(4-trimellitimidophenoxy) naphthalene (I), was readily obtained by the condensation reaction of 2,3-bis (4-aminophenoxy) naphthalene with trimellitic anhydride. A series of novel aromatic poly (amide-imide)s were prepared by the direct polycondensation of diimide-diacid I with various aromatic diamines using triphenyl phosphite in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. The resultant polymers have inherent viscosities in the range of 0.65–1.02 dL/g at 30°C in N, N-dimethylacetamide. These polymers were readily soluble in various organic solvents and could be cast into transparent, tough, and flexible films. Their casting films showed tensile strength at break up to 86 MPa, elongation to break of 5–9%, and initial moduli up to 2.35 GPa. The wide-angle X-ray diffraction revealed that those polymers containing p-phenylene or p-oxyphenylene group are partially crystalline, and the other polymers are evidenced as amorphous patterns. These polymers show a glass transition in the range of 213–290°C in their differential scanning calorimetry (DSC) traces. The thermal stability of the polymers was evaluated by thermogravimetry analysis, which showed the 10% weight-loss temperatures in the range of 508–565°C in nitrogen and 480–529°C in air atmosphere. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Novel aromatic poly(amide-imide)s with high inherent viscosities were prepared by direct polycondensation reaction of 2,5-bis(4-trimellitimidophenyl)-3,4-diphenylthiophene ( IV ) and aromatic diamines using triphenyl phosphite in the N-methyl–2-pyrrolidone (NMP)/pyridine solution containing dissolved CaCl2. The diimide-diacid IV was readily obtained by the condensation reaction of 2,5-bis(4-aminophenyl)-3,4-diphenylthiophene ( III 1) with trimellitic anhydride. The obtained poly(amide-imide)s showed high thermostability. Their decomposition temperatures at 10% weight loss in nitrogen atmospheres were above 550°C and the anaerobic char yield at 800°C ranged from 48 to 68%. Almost all the poly(amide-imide)s showed high glass transition temperatures above 300°C by differential scanning calorimetry (DSC) measurements. These polymers were readily soluble in various organic solvents and could be cast into transparent, tough, and flexible films. Their casting films showed obvious yield points in the stress-strain curves and had strength at break up to 74.2 MPa, elongation to break up to 70.1%, and initial modulus up to 4.56 GPa. The factors affecting the reaction of diimide-diacid IV and 4,4′-oxydianiline in view of monomer concentration, reaction temperature, and amount of CaCl2 were also investigated. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
A dicarboxylic acid ( I ) was prepared from the condensation of 9,9-bis[4-(4-aminophenoxy) phenyl] fluorene and trimellitic anhydride. A new family of poly(amide-imide)s having inherent viscosities of 0.75-1.04 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide-diacid I with various aromatic diamines in a medium consisting of N-methyl-2-pyrrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 262–325°C and the 10% weight loss temperatures were above 525°C in air. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
A dicarboxylic acid ( 1 ) bearing two pre-formed imide rings, was prepared from the condensation of 2,2-bis[4-(4-aminophenoxy)phenyl]propane and trimellitic anhydride. A new family of poly(amide-imide)s having inherent viscosities of 0.53–1.68 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide—diacid I with various aromatic diamines in a medium consisting of N-methyl-2-pyrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these poly(amide-imide)s were in the range of 237–293°C and the 10% weight loss temperatures were above 508°C in nitrogen. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
A new dicarboxylic acid having a kinked structure was synthesized from the condensation of 2,2′-bis(4-aminophenoxy)biphenyl and trimellitic anhydride. A series of biphenyl-2,2′-diyl-containing aromatic poly(amide-imide)s having inherent viscosities of 0.23–0.94 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide-diacid II with various aromatic diamines in a medium consisting of N-methyl-2-pyrrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films of these polymers could be cast from DMAc or NMP solutions. The glass transition temperatures of these polymers were in the range of 227–261°C and the 10% weight loss temperatures were above 520°C in nitrogen. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1169–1177, 1998  相似文献   

9.
A naphthalene unit-containing bis(ether anhydride), 2,7-bis(3,4-dicarboxyphenoxy)naphthalene dianhydride, was prepared in three steps starting from the nucleophilic nitrodisplacement reaction of 2,7-dihydroxynaphthalene and 4-nitrophthalonitrile in N,N-dimethylformamide (DMF) solution in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). High-molar-mass aromatic poly(ether imide)s were synthesized using a conventional two-stage polymerization process from the bis(ether anhydride) and ten aromatic diamines. The intermediate poly(ether amic acid)s had inherent viscosities of 0.95–2.67 dL/g. The films of poly(ether imide)s derived from two rigid diamines, that is, p-phenylenediamine and benzidine, crystallized and embrittled during the thermal imidization process. The other poly(ether imide)s belonged to amorphous materials and could be fabricated into transparent, flexible, and tough films. These poly(ether imide) films had yield strengths of 91–115 MPa, tensile strengths of 89–136 MPa, elongation to break of 11–45%, and initial moduli of 1.7–2.2 GPa. The Tgs of poly(ether imide)s were recorded in the range of 222–256°C depending on the nature of the diamine moiety. All polymers were thermally stable up to 500°C, with 10% weight loss being recorded above 540°C in air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2281–2287, 1997  相似文献   

10.
Various dicarboxylic acids with preformed imide rings were readily obtained by the condensation of ω-amino acids and aminobenzoic acids with trimellitic anhydride, and omega;-amino acids with pyromellitic dianhydride. New tetraphenylthiophene-containing poly(amide-imide)s having inherent viscosities of 0.58-1.54 dL/g were prepared by the direct polycondensation reaction of 2,5-bis(4-aminophenyl)-3,4-diphenylthiophene with the imide-containing dicarboxylic acids using triphenyl phosphite and pyridine as condensing agents. These polymers were amorphous and readily soluble in a variety of solvents such as dimethylacetamide (DMAc), dimethylformamide (DMF), and N-methyl–2-pyrrolidone (NMP), and could be easily solution cast into transparent, flexible, and tough films. Most of the poly(amide-imide)s showed clear glass transition on the heating traces of differential scanning calorimetry (DSC) in the range of 146–244°C. Almost all the poly(amide-imide)s exhibited no appreciable decomposition below 400°C, with 10% weight loss being recorded above 420°C in nitrogen. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
A novel spirobichroman unit containing dietheramine, 6,6′-bis(4-aminophenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was prepared by the nucleophilic substitution of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman with p-chloronitrobenzene in the presence of K2CO3 followed by hydrazine catalytic reduction of the intermediate dinitro compound. A series of polyimides were synthesized from diamine 3 and various aromatic dianhydrides by a conventional two-stage procedure through the formation of poly(amic-acid)s followed by thermal imidization. The intermediate poly(amic-acid)s had inherent viscosities of 1.00–2.78 dL/g. All the poly-(amic-acid)s could be thermally cyclodehydrated into flexible and tough polyimide films, and some polyimides were soluble in polar solvents such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). These polyimides had glass transition temperatures (Tg) in the range of 236–256°C, and 10% weight loss occurred up to 450°C. Furthermore, a series of polyamides and poly(amide-imide)s with inherent viscosities of 0.71–2.29 dL/g were prepared by direct polycondensation of the diamine 3 with various aromatic dicarboxylic acids and imide ring-containing dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides and poly(amide-imide)s were readily soluble in polar solvents such as DMAc, and tough and flexible films could be cast from their DMAc solutions. These polymers had glass transition temperatures in the range of 137–228°C and 10% weight loss temperatures in the range of 419–443°C in air and 404–436°C in nitrogen, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1487–1497, 1997  相似文献   

12.
A series of new poly(o-hydroxy amide-imide)s with high molecular weights were synthesized by low-temperature solution polycondensation from a preformed imide ring and chloro- or dichloro-substituted p-phenylene-containing diacid chlorides of 2,5-bis(trimellitimido)chlorobenzene or 1,4-bis(trimellitimido)-2,5-dichlorobenzene and three bis(o-amino phenol)s. All the poly(o-hydroxy amide-imide)s were readily soluble in a variety of organic solvents such as N-methyl-2-pyrrolidone and N,N-dimethylacetamide. Transparent and flexible films of these polymers were cast from their solutions. The cast films had tensile strengths ranging from 88 to 102 MPa and elongations at break of 8–12%. Subsequent thermal cyclodehydration of the poly(o-hydroxy amide-imide)s afforded novel poly(benzoxazole-imide)s. The poly(benzoxazole-imide)s exhibited glass-transition temperatures in the range of 310–338 °C and were stable up to 500 °C in nitrogen, with 10% weight-loss temperatures recorded between 550 and 570 °C in nitrogen. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4151–4158, 1999  相似文献   

13.
A novel polymer-forming diimide–diacid, 2,6-bis(4-trimellitimidophenoxy)naphthalene, was prepared by the condensation reaction of 2,6-bis(4-aminophenoxy)naphthalene with trimellitic anhydride (TMA). A series of novel aromatic poly(amide–imide)s containing 2,6-bis(phenoxy)naphthalene units were prepared by the direct polycondensation of the diimide–diacid with various aromatic diamines using triphenyl phosphite (TPP) in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. Thirteen of the obtained polymers had inherent viscosities above 1.01 dL/g and up to 2.30 dL/g. Most of polymers were soluble in polar solvents such as DMAc and could be cast from their DMAc solutions into transparent, flexible, and tough films. These films had tensile strengths of 79–117 MPa, elongation-at-break of 7–61%, and initial moduli of 2.2–3.0 GPa. The wide-angle X-ray diffraction revealed that some polymers are partially crystalline. The glass transition temperatures of some polymers could be determined with the help of differential scanning calorimetry (DSC) traces, which were recorded in the range 232–300°C. All the poly(amide–imide)s exhibited no appreciable decomposition below 450°C, and their 10% weight loss temperatures were recorded in the range 511–577°C in nitrogen and 497–601°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 919–927, 1998  相似文献   

14.
A series of novel soluble poly(amide-imide)s were prepared from the diimide-dicarboxylic acid, 2,2-bis[N-(4-carboxyphenyl)-phthalimidyl]hexafluoropropane, with various diamines by the direct polycondensation in N-methyl-2-pyrrolidinone containing CaCl2 using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.78–1.63 dL g−1. The polymers were amorphous and readily soluble in aprotic polar solvents such as N-methyl-2-pyrrolidinone, N,N-dimethylacetamide, N,N-dimethylformamide, and dimethyl sulfoxide as well as in less polar solvents such as pyridine and γ-butyrolactone, and also in tetrahydrofuran. The polymer films had tensile strength of 84–129 MPa, an elongation at break range of 6–22%, and a tensile modulus range of 2.0–2.7 GPa. The glass transition temperatures of the polymers were determined by DSC method and they were in the range of 240–282°C. These polymers were fairly stable up to a temperature around or above 400°C, and lose 10% weight in the range of 450–514°C and 440–506°C in nitrogen and air, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2629–2635, 1999  相似文献   

15.
Soluble fluorine containing poly(amide-imide)s, PAI(1-4), were synthesized from diimide-dicarboxylic acid, 2,2-bis[N-(4-carboxyphenyl)-phthalimide-1,4-yl]hexafluoropropane with various diamines by direct polycondensation in N-methyl-2-pyrrolidone (NMP) containing CaCl2 and using triphenyl phosphite and pyridine as condensing agents. The polymers were readily soluble in aprotic polar solvents such as NMP, N,N-dimethylacetamide, dimethyl sulfoxide and tetrahydrofuran. Their Langmuir monolayers were studied at the air/water interface. The monolayers were generally stable at the water surface and could be reproducibly transferred onto solid substrates to build up Langmuir-Blodgett (LB) multilayers. The LB mono- and multilayers were characterized by ultra-violet/visible spectroscopy (UV-Vis), surface plasmon resonance, atomic force microscopy.  相似文献   

16.
A series of polyamides and poly(amide-imide)s were prepared by the direct poly-condensation of 2,2-bis(4-aminophenoxy) benzonitrile [4-APBN] with aromatic dicarboxylic acids and bis(carboxyphthalimide)s in N-methyl-2-pyrrolidone [NMP] with triphenyl phosphite and pyridine as condensing agents. The synthesis of 4-APBN involves a nucleophilic displacement reaction in dipolar aprotic solvent with the alkali metal salt of p-aminophenol and an activated aromatic dichloro compound. Bis(carboxyphthalimide)s were prepared by condensation of 4,4-diaminodiphenylsulfone, 3,3-diaminodiphenylsulfone, 4,4-diaminodiphenylether, 4,4-diaminodiphenylmethane, 3,3-diaminobenzophenone, and trimellitic anhydride at a 1:2 molar ratio. The inherent viscosities of the resulting polymers were found to be in the range of 0.31-0.93 dl/g and glass transition temperatures between 235 and 298 °C. All polymers were soluble in aprotic polar solvents such as dimethylsulfoxide and NMP. The results of thermogravimetry revealed that all the polymers showed no significant weight loss before 400 °C. Wide-angle X-ray diffractograms revealed that all polymers were found to be amorphous except for the polyamide derived from isophthalic acid and polyamide-imides derived from diaminodiphenylether and diaminobenzophenone based bis(carboxyphthalimide)s.  相似文献   

17.
A diimide dicarboxylic acid, 1,4‐bis(4‐trimellitimidophenoxy)naphthalene (1,4‐BTMPN), was prepared by condensation of 1,4‐bis(4‐aminophenoxy)naphthalene and trimellitic anhydride at a 1 : 2 molar ratio. A series of novel poly(amide‐imide)s (IIa–k) with inherent viscosities of 0.72 to 1.59 dL/g were prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid 1,4‐BTMPN with various aromatic diamines (Ia–k) in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s showed good solubility in NMP, N,N‐dimethylacetamide, and N,N‐dimethylformamide. The thermal properties of the obtained poly(amide‐imide)s were examined with differential scanning calorimetry and thermogravimetry analysis. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures in the range of 215 to 263°C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses at temperatures in the range of 538 to 569°C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s also is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1–8, 2000  相似文献   

18.
A new naphthalene unit-containing bis(ether anhydride), 2,6-bis(3,4-dicarboxyphenoxy)naphthalene dianhydride, was synthesized in three steps starting from the nucleophilic nitrodisplacement reaction of 2,6-dihydroxynaphthalene and 4-nitrophthalonitrile in N,N-dimethylformamide (DMF) solution in the presence of potassium carbonate, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). High-molar-mass aromatic poly(ether imide)s were prepared using a conventional two-step polymerization process from the bis(ether anhydride) and various aromatic diamines. The intermediate poly(ether amic acid)s had inherent viscosities of 0.65–2.03 dL/g. The films of poly(ether imide)s derived from two rigid diamines, i.e. p-phenylenediamine and benzidine, crystallized during the thermal imidization process. The other poly(ether imide)s belonged to amorphous materials and could be fabricated into transparent, flexible, and tough films. These aromatic poly(ether imide) films had yield strengths of 104–131 MPa, tensile strengths of 102–153 MPa, elongation to break of 8–87%, and initial moduli of 1.6–3.2 GPa. The glass transition temperatures (Tg's) of poly(ether imide)s were recorded in the range of 220–277°C depending on the nature of the diamine moiety. All polymers were stable up to 500°C, with 10% weight loss being recorded above 550°C in both air and nitrogen atmospheres. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1657–1665, 1998  相似文献   

19.
New aromatic poly(amide-imide)s with high inherent viscosities were prepared by direct polycondensation reaction of diimide-diacid (I) and aromatic diamines using triphenyl phosphite in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved CaCl2. The bis(3-trimellitimidophenyl) phenyl phosphine oxide (I) was readily obtained by the condensation reaction of bis(3-aminophenyl) phenyl phosphine oxide (BAPPO) with trimellitic anhydride. The resulting poly(amide-imide)s showed high thermostability. Their decomposition temperatures at 10% weight loss in nitrogen atmosphere were above 532 °C and the anaerobic char yield at 800 °C ranged from 56% to 74%. Almost all the poly(amide-imide)s showed high glass transition temperature above 233 °C by differential scanning calorimetry (DSC) measurements. These polymers were readily soluble in various organic solvents and by their casting into transparent, tough and flexible films can be easily achieved.  相似文献   

20.
<正>New organo-soluble poly(amide-imide)s(PAIs) 8a-8f were prepared from newly synthesized 1,2-bis[4,4'-(trimellitimido) phenoxy]ethane 6 via direct polycondensation with various aromatic diamines.The diacid 6 was synthesized by the condensation reaction of 12-bis[4-atninophenoxy]ethane 4 with trimellitic anhydride 5 in acetic acid.All polymers were obtained in quantitative high yields with inherent viscosities of 0.48-0.61 dL/g.All of these polymers were highly soluble in organic solvents such as,N-methyl-2-pyrrolidone(NMP),dimethylformamide(DMF),N,N'-dimethylacetamide (DMAc) and dimethylsulfoxide(DMSO) at room temperature and were fully characterized by means of NMR spectroscopy, FTIR spectroscopy,elemental analyses,inherent viscosity,solubility test,specific rotation,differential scanning calorimetry (DSC) and thermogravimetric analysis(TGA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号