首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methanol-induced opacity in poly (methyl methacrylate) (PMMA) is investigated subject to two cooling processes; furnace cooling and air cooling. The glass transition temperature of PMMA decreases with increasing time of exposure to methanol at 40–60°C and then increases during cooling, due to progressive desorption. Voids form during cooling as long as specimen temperature remains above its glass transition temperature. Since furnace cooling affords enough time for holes to expand larger than the light wavelengths, the transmittance of furnace-cooled PMMA is independent of wavelength. The transmittance of PMMA subjected to rapid cooling in the air is wavelength dependent due to scattering by holes smaller than light wavelengths. The transmittance of PMMA bearing a given weight gain of methanol (measured at absorption temperature) prior to cooling for furance cooling is lower than that for the same material subjected to air cooling. A sharp front between outer and inner regions is found in specimens removed quickly from the thermostated water bath to air at ambient temperature.  相似文献   

2.
Ion irradiation with Xe+ has been utilized to produce electrical conductivity in PMMA, as measured using a four-point in-line probe. Incident ion beam energy and current density have been varied to investigate their effect on electrical conductivity and optical absorbance of the samples after irradiation. Results support the premise that selection of beam parameters that maximize the ratio of energy transfer-producing displacements to energy transfer-producing ionization maximizes the ratio of induced conductivity to induced absorbance in the irradiated samples. Conductivity versus ion dose has also been shown to be well estimated using a damage trial model. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
Since a few years ago, a topic of interest consists in developing composites filled with nanofillers to improve thermal degradation and flammability property of poly(methyl methacrylate) (PMMA). In the present work, the effects of ZnO nanoparticles and organo-modified montmorillonite (OMMT) on the thermal degradation of PMMA were investigated by thermogravimetric analysis (TGA). PMMA-ZnO and PMMA-OMMT nanocomposites were prepared by melt blending with different (2, 5, and 10 wt%) loadings. SEM and TEM analyses of nanocomposites were performed in order to investigate the dispersion of nanofillers in the matrix. According to TGA results, the addition of ZnO nanoparticles does not affect the thermal degradation of PMMA under an inert atmosphere. However, in an oxidative atmosphere, two contrary effects were observed, a catalytic effect at lower concentration of ZnO in the PMMA matrix and a stabilizing effect when the ZnO concentration is higher (10 wt%). In contrast, the presence of OMMT stabilizes the thermal degradation of PMMA whatever be the atmosphere. Differential thermal analysis (DTA) curves showed surprising results, because a dramatic change of exothermic reaction of the PMMA degradation process to an endothermic reaction was observed only in the case of OMMT. During the degradation of PMMA-ZnO nanocomposites, pyrolysis-gas chromatography coupled to mass spectrometer (Py-GC/MS) showed an increase in the formation of methanol and methacrylic acid while a decrease in the formation of propanoic acid methyl ester occurred. In the case of PMMA-OMMT systems, a very significant reduction in the quantity of all these degradation products of PMMA was observed with increasing OMMT concentration. It is also noted that during PMMA-OMMT degradation less energy was released as the decomposition is an endothermic reaction and the material was cooled.  相似文献   

4.
The crack healing induced by ethanol in poly(methyl methacrylate) (PMMA) has been studied at temperatures of 40–60°C. Crack healing occurs because the effective glass transition temperature of PMMA is reduced to below the test temperature by ethanol plasticization. It is found that crack closure rate is constant at a given temperature. The fracture strength of healed PMMA is lower than that of the original samples. By comparing the fracture stress with the morphology of the crack edge on the PMMA surface, we found that a high degree of swelling is responsible for the incomplete recovery of mechanical strength. The fractography of the completely healed sample shows a very different fracture morphology from that of virgin PMMA. The transport of ethanol in PMMA also is studied. At lower temperatures, transport is described by ideal Case II behavior. As the temperature increases, the kinetics shift from ideal Case II to anomalous behavior. The first stage of crack healing is controlled by Case I transport. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
It was found that free radicals of poly(methyl methacrylate) (PMMA) were formed by addition of the spin trapping agent, 2,6,-di-chloro-nitrosobenzene (DCNB), to a PMMA-benzene solution. This PMMA radical was detected by the spin adduct with DCNB. It was identified as a chain scission radical
by the analysis of the ESR spectrum and experiments using samples of PMMA deuterated either in the α-methyl or in the ester methyl group. Since DCNB is known to abstract hydrogen from other molecules, the main chain scission of PMMA caused by the action of DCNB is an indirect process resulting from a ß-scission of the PMMA radical after a methylene hydrogen has been abstracted.  相似文献   

6.
TG studies are given for PMMA prepared by radical polymerization, PTHF prepared by cationic polymerization, and their blends. A procedure is proposed for determining the activation energy, frequency factor, and the order of events corresponding to the respective stages of the multistage TG curves. The order of the initial event of PMMA is not the 1st. It is shown for this discussion that the relationship between mass loss and time of the 2nd order reaction is similar to that of the depolymerization including the vaporization process at the earlier times. Some of TG curves of PTHF are not dependent on the heating rate. This independence depends on the size of sample. The order of event of PTHF, which is obtained from TG curves dependent on the heating rate, is the 0th. The event order equal to the 0th reflects major contribution of vaporization in the event. The TG behaviors shown by the procedure mentioned above for the PMMA/PTHF blends with the smaller PMMA or PTHF contents cancel those of PMMA or PTHF. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
8.
For a wide range of poly(vinyl methyl ether) (PMVE) concentrations (1–16 g dm−3), in anoxic conditions, polymer-derived radicals recombine in two major pathways: (i) crosslinking and (ii) disproportionation. Both these processes proceed inter- and intramolecularly. The radiation-chemical yields and kinetics of crosslinking have been studied by pulse radiolysis with light scattering intensity detection (LSI). In the absence of oxygen, G-values of intermolecular crosslinking were determined on the basis of LSI changes versus applied dose and compared with the results obtained previously for γ-irradiated samples. It has been found that the first half-life time of intermolecular crosslinking decreases with increasing dose per pulse. Addition of small amounts of macroradical scavenger (cysteamine hydrochloride) decreases, drastically, the increase of LSI signal. On increasing the PVME concentration, intermolecular crosslinking becomes more efficient.

In the presence of oxygen, for diluted PVME solution (0.1 g dm−3), decrease of LSI signal consisting of the kinetic of a first-order reaction was observed. The rate constant of LSI decrease was found to be 1.1×103 s−1 and it was attributed to the main-chain scission.  相似文献   


9.
A series of polymer blend/organoclay nanocomposite at a fixed blending ratio was prepared using equal ratio of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) via solvent casting method. With respect to nanoscale internal structure, we found that PMMA chains have better affinity with organoclay than PEO, based on the results from X-ray diffraction. Direct visualization via transmission electron microscopy (TEM) also supported the better affinity of PMMA with organoclay by indicating the existence of hybrid structures of mainly intercalated but with some exfoliated forms. The miscible nature of the blend and homogeneous dispersion state of layered silicate in the blend system were investigated via the microscopic fractured surface morphologies. From rheological measurements (storage and loss modulus), we discovered the role of the physical network structure between polymer and organoclay to be a main factor for the enhancement of elastic properties.  相似文献   

10.
The aim of this study was to investigate the thermal degradability, and in particular, the thermal degradation mechanism of organophosphorus flame-retardant poly(methyl methacrylate) (PMMA). For this purpose thermogravimetry and direct pyrolysis mass spectrometry analyses were used. Release of diethylphosphinic acid, melamine, and several products involving Al-O-P and N-P linkages were detected from the organophosphorus additive containing aluminium diethylphosphinate, melamine polyphosphate and zinc borate. When incorporated in PMMA, reactions of diethylphosphinic acid, melamine and/or their derivatives with the ester group affected the decomposition pathways by generation of (C2H5)2POOCH3 and HNCO at relatively high temperatures.  相似文献   

11.
A pulse radiolysis study of poly(methyl methacrylate) in the presence of pyrene has been carried out in the temperature range 100–295 K. The concentration of pyrene was changed from 10−3 to 10−1 mol dm−3. The absorption/emission spectra and kinetics of solute excited states and solute radical ions were investigated. It was found that pyrene excited states were formed as a result of their radical ion recombination in a time scale up to seconds. The decay of solute radical ions was influenced by photobleaching and can be described by a time-dependent rate constant. The activation energy of Py ions decay was temperature dependent and was equal to 35.7 and 1.2 kJ/mol for temperatures >Tγ and <Tγ, respectively, where Tγ ∼ 175 K represented the transition temperature responsible for γ-relaxation. The reaction mechanism was proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1209–1215, 1998  相似文献   

12.
The thermal degradation of waste poly(methyl methacrylate) (PMMA) in the presence of ferric sulfate, cupric sulfate, aluminum sulfate, magnesium sulfate, and barium sulfate was studied by using thermogravimetric analysis (TGA) in air atmosphere. The values of apparent activation energies (Ea) calculated by Flynn-Wall-Ozawa method were found to be in the order of PMMA + Fe2(SO4)3 < PMMA + Al2(SO4)3 < PMMA + MgSO4 < PMMA + CuSO4 < PMMA + BaSO4 < PMMA. The mechanism of catalytic degradation of PMMA in presence of the sulfates was discussed and the results showed that the catalytic effects of sulfates have a relationship with the acidity of their respective metal ions.  相似文献   

13.
The miscibility, morphology, and thermal properties of poly(vinyl chloride) (PVC) blends with different concentrations of poly(methyl methacylate) (PMMA) have been studied. The interaction between the phases was studied by FTIR and by measuring the glass transition temperature (Tg) of the blends using differential scanning calorimetry. Distribution of the phases at different compositions was studied through scanning electron microscopy. The FTIR and SEM results show little interaction and gross phase separation. The thermogravimetric studies on these blends were carried out under inert atmosphere from ambient to 800 °C at different heating rates varying from 2.5 to 20 °C/min. The thermal decomposition temperatures of the first and second stage of degradation in PVC in the presence of PMMA were higher than the pure. The stabilization effect on PVC was found most significant with 10 wt% PMMA content in the PVC matrix. These results agree with the isothermal degradation studies using dehydrochlorination and UV-vis spectroscopic results carried out on these blends. Using multiple heating rate kinetics the activation energies of the degradation process in PVC and its blends have been reported.  相似文献   

14.
Liposome immunoassay (LIA) is based on enzyme immunoassay (EIA) but the detection sensitivity could be significantly enhanced by using antibody-coupled immunoliposomes encapsulating HRP (horse radish peroxidase). Here, we applied LIA to non-porous poly(methyl methacrylate) (PMMA) and polystyrene (PS) surfaces to compare its detection sensitivity with that of EIA, using rabbit IgG (a ligand molecule) and anti-rabbit IgG antibody (a capture molecule) as the model system. LIA developed much stronger color signals than EIA, especially at a lower concentration range (< ca. 1 μg mL−1). PMMA showed higher affinity toward rabbit IgG than the PS surface, and the anti-rabbit IgG antibody adsorbed on PMMA was more stable than that on PS. Furthermore, the effects of spot volume and antibody concentration on the signal density were analyzed. The signal density increased as the antibody concentration increased, but it was not significantly affected by the spot volume (2.5–20 μL). In conclusion, LIA on PMMA as a solid support is a very useful, highly sensitive microarray detection system. Sang Youn Hwang and Yoichi Kumada have same rights on this paper.  相似文献   

15.
Rigid–rigid blends made of ionomer and ionomer precursor polymer, based on poly(methyl methacrylate) (PMMA), have been investigated. Two series of blends have been prepared for studying mechanical properties. In one series, dynamic mechanical properties were determined over a wide range of temperatures. As the weight fraction of the ionomer was increased, there was a modest increase of modulus at ambient temperature and a very large increase in the rubbery modulus at elevated temperatures above the glass transition temperature of PMMA. In a second series of tests, tensile stress–strain measurements, made at an ambient temperature, were carried out over a wide range of blend compositions. For all blends tested, the mechanical properties exhibited a synergistic enhancement, i.e., average values of modulus, strength and fracture energy were all higher than expected based on the rule of mixtures. Measurements of fracture toughness also exhibited synergy, with a maximum value, higher than the value of either blend component, being attained in blends containing about 30 wt % of the PMMA ionomer. These results are interpreted in terms of a higher resistance to fracture of the more chain-entangled ionomer phase and good interfacial adhesion between the two components of the blend. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1235–1245, 1998  相似文献   

16.
The time-domain dielectric response (after-effect) of poly(methyl methacrylate) (PMMA) and nitrile butadiene rubber (NBR) to a voltage step (100 V) was measured at varying temperatures. From the variation of the sample capacitanceC with time, we determined the ratioF d/C, withF d=(dC/dlnt)max and C denoting the difference between the initial and the extrapolated equilibrium capacitance values. For PMMA around room temperature (RT) this ratio assumed values similar to those reported for mechanical stress relaxation. With NBR, such values were observed only at temperatures significantly below RT. A modified Kohlrausch-Williams-Watts (stretched exponential) function provided a good fit to the measuredC(t) data.  相似文献   

17.
The aim of this work was to study the thermo-oxidative dehydrochlorination of rigid and plasticised poly(vinyl chloride)/poly(methyl methacrylate) blends. For that purpose, blends of variable compositions from 0 to 100 wt% were prepared in the presence (15, 30 and 50 wt%) and in the absence of diethyl-2-hexyl phthalate as plasticiser. Their miscibility was investigated by using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Their thermo-oxidative degradation at 180 ± 1 °C was studied and the amount of HCl released from PVC was measured by a continuous potentiometric method. Degraded samples were characterised, after purification, by FTIR spectroscopy and UV-visible spectroscopy. The results showed that the two polymers are miscible up to 60 wt% of poly(methyl methacrylate) (PMMA). This miscibility is due to a specific interaction of hydrogen bonding type between carbonyl groups (CO) of PMMA and hydrogen (CHCl) groups of PVC as shown by FTIR analysis. On the other hand, PMMA exerted a stabilizing effect on the thermal degradation of PVC by reducing the zip dehydrochlorination, leading to the formation of shorter polyenes.  相似文献   

18.
Dynamic mechanical analysis, nuclear magnetic resonance, and thermogravimetric analysis experiments were performed on pure poly(methyl methacrylate) and on in situ polymerized single-walled carbon nanotube (SWNT)/PMMA nanocomposites. The addition of less than 0.1 wt % SWNT to PMMA led to an increase in the low-temperature elastic modulus of approximately 10% beyond that of pure PMMA. The glass-transition temperature and the elastic modulus at higher temperatures of the nanocomposites remained unchanged from those of pure PMMA. These changes were associated with excessive cohesive interactions between the large-surface area nanotubes and PMMA and were not due to changes in the microstructural features of the polymer during synthesis. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2286–2293, 2004  相似文献   

19.
The ester CD3 stretching modes in a partially deuterated poly(methyl methacrylate) sample have been studied as a function of temperature and bands in the CD stretching region assigned to fundamentals in Fermi resonance with overtone/combination modes. Changes in band parameters (widths, shapes) are observed at specific temperatures. Time correlation functions and their variation with temperature were calculated for the most intense modes observed in this region of the spectrum. The correlation functions were modeled by assuming that there is a fast relaxation process characterized by a single relaxation time that is inhomogeneously broadened by a slower process, also characterized by a single relaxation time. The fast modulation is in the sub picosecond time range, while the slower process has a relaxation time of the order of 1-10 ps. Relaxation times and other parameters are sensitive to transitions observed both below and above the glass transition, as well as at the Tg itself. The high temperature transition corresponds to a liquid-liquid transition observed in other studies and predicted by theory. The lower temperature transition appears to correspond to the Vogel-Fulcher or Kauzmann temperature. Infrared spectroscopy and band shape analysis appear to be a useful probe of these transitions.  相似文献   

20.
Gamma radiation is increasingly being used to sterilise intraocular lenses (IOLs) made from poly(methyl methacrylate) (PMMA). In this study, samples of PMMA used in the fabrication of IOLs were exposed to irradiation doses typically used for their sterilisation. The effect of this treatment on the polymer was analysed by size-exclusion chromatography (SEC), UV-visible and infrared spectroscopy and scanning electron microscopy (SEM). The PMMA was found to have undergone chain scission, decarboxylation and colour change following the irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号