首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary: Poly(methyl methacrylate)s (PMMAs) containing a terminal hydroxy group or multiple hydroxy groups as pendants were grafted to multiwalled carbon nanotubes (MWNTs) by esterification in toluene at 100 °C. The recovered polymer with a low level of MWNTs and the PMMA‐g‐MWNTs with up to 12 wt.‐% grafted polymer were characterized using spectroscopic, microscopic, and thermogravimetric analyses. The percentage of polymer present in the PMMA‐g‐MWNT samples is very low based upon the concentration of the acid groups in the tubes.

The grafting of hydroxy‐terminated PMMA to MWNTs by esterification.  相似文献   


2.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

3.
The present report describes the synthesis of a densely grafted copolymer consisting of a rigid main chain and flexible side chains by the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from an ATRP initiator‐bearing poly(phenylacetylene) [poly(BrPA)]. Poly(BrPA) was obtained by the polymerization of 4‐ethynylbenzyl‐2‐bromoisobutyrate using [Rh(NBD)Cl]2 in the presence of Et3N. The 1H NMR spectrum showed that poly(BrPA) was in the cis‐transoid form. Upon heating at 30 °C for 24 h the cis‐transoid form was maintained. ATRP of MMA from the poly(BrPA) was carried out at 30 °C using CuX (X = Br, Cl) as the catalyst and N,N,N′,N′,N′‐pentamethyldiethylenetriamine as the ligand, and the resulting graft copolymers were investigated with 1H NMR and SEC. To analyze the graft structure in more detail, the graft copolymers were hydrolyzed with KOH and the resultant poly(MMA) part was investigated with 1H NMR and SEC. The polydispersity indexes of 1.25–1.45 indicated that the graft copolymers have well‐controlled side chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6697–6707, 2006  相似文献   

4.
The bulk polymerization of methyl methacrylate and styrene in the presence of an organically modified clay containing a vinyl group that can be involved in the polymerization produces exfoliated nanocomposites. These nanocomposites have been characterized by X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, mechanical properties, and cone calorimetry. The onset temperature of thermal degradation increases with the mechanical properties. The peak heat release rate is significantly reduced for nanocomposites containing 3 or 5% clay. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1124–1135, 2003  相似文献   

5.
A systematic study of the dynamic shear modulusG *=G+G in three poly(alkyl methacrylates) (PEMA, PnPMA, PnBMA) at frequencies between 0.001 and 500 rad/s is presented. As the splitting frequencies s are low, aging effects can be observed in the splitting region. There is a systematic shift of the splitting frequency s to lower values with increasing length of the alkyl side group. In PnBMA a separate shear appearance is observed about two frequency decades below the local mode . This is discussed in terms of the concept of minimal cooperativity. Aging effects are: Shift of the maximum loss frequency to lower values, peak sharpening of the relaxation, and intensity changes of and . These effects are discussed in terms of the sequential aging concept. Aging leads to a pronounced bending of the traces upwards from the equilibrium line in the Arrhenius diagram. These non-equilibrium phenomena are promoted by the small slope m=d(log )/dT of the trace in the splitting region.Dedicated to Prof. E. W. Fischer at the occasion of his 65th Birthday Lieber Herr Fischer, die Hallenser Polymerphysiker danken Ihnen aufrichtig für die warmherzige und effektive Förderung der Polymerwissenschaften im Raum Halle-Merseburg.  相似文献   

6.
A method for the synthesis of well-defined poly(alkyl vinyl ether–2-ethyl-2-oxazoline) diblock copolymers with hydrolytically stable block linkages has been developed. Monofunctional poly(alkyl vinyl ether) oligomers with nearly Poisson molecular weight distributions were prepared via a living cationic polymerization method using chloroethyl vinyl ether together with HI/ZnI2 as the initiating system and lithium borohydride as the termination reagent. Using the resultant chloroethyl ether functional oligomers in combination with sodium iodide as macroinitiators, 2-ethyl-2-oxazoline was polymerized in chlorobenzene/NMP to afford diblock copolymers. A series of poly(methyl vinyl ether–2-ethyl-2-oxazoline) diblock materials were found to have polydispersities of ≈ 1.3–1.4 and are microphase separated as indicated by two Tg's in their DSC thermograms. These copolymers are presently being used as model materials to study fundamental parameters important for steric stabilization of dispersions in polar media. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
Poly(methylphenylsiloxane)–poly(methyl methacrylate) graft copolymers (PSXE-g-PMMA) were prepared by condensation reaction of poly(methylphenylsiloxane)-containing epoxy resin (PSXE) with carboxyl-terminated poly(methyl methacrylate) (PMMA), and they were characterized by gel permeation chromatography (GPC), infrared (IR), and 29Si and 13C nuclear magnetic resonance (NMR). The microstructure of the PSXE-g-PMMA graft copolymer was investigated by proton spin–spin relaxation T2 measurements. The thermal stability and apparent activation energy for thermal degradation of these copolymers were studied by thermogravimetry and compared with unmodified PMMA. The incorporation of poly(methylphenylsiloxane) segments in graft copolymers improved thermal stability of PMMA and enhanced the activation energy for thermal degradation of PMMA. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2521–2530, 1998  相似文献   

8.
The vinyl of the ester group of 2-vinyloxyethyl methacrylate was first selectively reacted with acetic acid to obtain 2-[1-(acetoxy)ethoxy]ethyl methacrylate ( 2 ). This protected monomer was subjected to anionic polymerization in tetrahydrofuran at −60°C in the presence of LiCl, using 1,1-diphenylhexyllithium as initiator. The molecular weight of the polymer could thus be controlled and a narrow molecular weight distribution obtained. The protecting group, 1-(acetoxy)ethyl, could be easily eliminated (by quenching the polymerization reaction with methanol and water) to generate poly(2-hydroxyethyl methacrylate) (poly(HEMA)). Block copolymers were also prepared by the sequential anionic polymerization of MMA and 2 or styrene and 2 . They possess narrow molecular weight distributions, and controlled molecular weights and compositions. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1865–1872, 1998  相似文献   

9.
10.
Azo group-containing polydimethylsiloxanes (PDMS–ACP), macroazoinitiators, were prepared by polycondensation reaction of 4,4′-azobis-4-cyanopentanoyl chloride (ACPC) with hydroxybutyl-terminated polydimethylsiloxane (PDMS) of varying molecular weights. The activation energy (Ea), activation enthalpy (ΔH), and activation entropy (ΔS) of the thermodecomposition of PDMS-ACP in toluene increased with increase in poly-dimethyl-siloxane chain length (SCL) in PDMS moieties, while the activation free energy (ΔG) was independent on the SCL. The polydimethylsiloxane-poly(methyl methacrylate) block copolymers (PDMS-b-PMMA) were prepared by the use of PDMS-ACP macroazoinitiators, and they were characterized by 1H-, 29Si-, and 13C-nuclear magnetic resonance (NMR) spectroscopies. The microstructure and morphology of copolymers were investigated by proton spin–spin relaxation measurements and scanning electron microscopy (SEM). © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The specific isobaric heat capacities of poly (methylmethacrylates) (PMMA) having various tacticities were measured by the DSC method within a broad range of temperatures including the glass transition. Glasses with uniform thermal history were used in the measurements and the data were treated by employing a procedure which provided the thermodynamic Tg independent of the experimental conditions. The semiquantitative validity of Boyer's empirical relationT g ×cp=const. was confirmed; also it was found that within the limits of experimental accuracy the cp,g values at 298 K andC p,l values at 400 K are independent of the tacticity of the sample.Using the data thus measured and linearized equations representing the dependence ofT g on the content of iso-, syndio- and heterotriads, the Tg values of pure isotactic PMMA and pure syndiotactic PMMA were found to be respectively 315 K and 397 K.Dedicated to Professor Dr. F. H. Müller.  相似文献   

12.
The phase behavior and crystallization of graft copolymers consisting of poly(n‐hexyl methacrylate) (PHMA) as an amorphous main chain and poly(ethylene glycol) (PEG) as crystallizable side chains (HMAx with 15 ≤ x ≤ 73, where x represents the weight percentage of PEG) were investigated. Small‐angle X‐ray scattering profiles measured above the melting temperature of PEG suggested that a microdomain structure with segregated PHMA and PEG domains was formed in HMA40 and HMA46. This phase behavior was qualitatively described by a calculated phase diagram based on the mean‐field theory. Because of the segregation of PEG into microdomains, the crystallization temperature of the PEG side chains in HMAx was higher than that in poly(methyl acrylate)‐graft‐poly(ethylene glycol) having a similar value of x, which was considered to be in a disordered state above the melting temperature. In HMAx with x ≤ 40, PEG crystallization was strongly restricted, probably because the PEG microdomains were isolated in the PHMA matrix. As a result, the growth of PEG spherulite was not observed because the PEG crystallization occurred after vitrification of the PHMA segregated domains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 129–137, 2007  相似文献   

13.
The synthesis of novel amphiphilic star-graft (SG) copolymers containing hydrophilic poly(oxyethylene) (PEO) side chains attached to a hydrophobic backbone by multifunctional entity is reported. In a first step poly(phthalimidoacrylate-co-styrene) was converted into polymers containing different number of multifunctional branching cites distributed along the main chain by partial aminolysis of the phthalimidoacrylate units with tris(hydroxymethyl)aminomethane. In the second step, these reactive copolymers yielded SG copolymers with different number of star-shaped PEO side groups by reaction with isocyanato terminated methoxy–PEO. The copolymers were characterized by size-exclusion chromatography, IR-, and NMR-spectroscopy. Their thermal properties were examined by thermal gravimetric analysis and differential scanning calorimetry. The studies indicate that the grafting degree and hydrogen bonding determine to a great extent the behavior of the SG copolymers in solid state and in solution. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 673–679, 1997  相似文献   

14.
A straightforward and efficient synthetic method that transforms poly(methyl methacrylate) (PMMA) into value‐added materials is presented. Specifically, PMMA is modified by transesterification to produce a variety of functional copolymers from a single starting material. Key to the reaction is the use of lithium alkoxides, prepared by treatment of primary alcohols with LDA, to displace the methyl esters. Under optimized conditions, up to 65% functionalization was achieved and copolymers containing alkyl, alkene, alkyne, benzyl, and (poly)ether side groups could be prepared. The versatility of this protocol was further demonstrated through the functionalization of both PMMA homo and block copolymers obtained through either radical polymerization (traditional and controlled) or anionic procedures. The scope of this strategy was illustrated by extension to a range of architectures and polymer backbones. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1566–1574  相似文献   

15.
Simultaneous IPNs of poly(dimethyl siloxane-urethane) (PDMSU)/poly(methyl methacrylate) (PMMA) and related isomers have been prepared by using new oligomers of bis(β-hydroxyethoxymethyl)poly(dimethyl siloxane)s (PDMS diols) and new crosslinkers biuret triisocyanate (BTI) and tris(β-hydroxylethoxymethyl dimethylsiloxy) phenylsilane (Si-triol). Their phase morphology have been characterized by DSC and SEM. The SEM phase domain size is decreased by increasing crosslink density of the PDMSU network. A single phase IPN of PDMSU/PMMA can be made at an Mc = 1000 and 80 wt % of PDMSU. All of the pseudo- or semi-IPNs and blends of PDMSU and PMMA were phase separated with phase domain sizes ranging from 0.2 to several micrometers. The full IPNs of PDMSU/PMMA have better thermal resistance compared to the blends of linear PDMSU and linear PMMA. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Various natural and modified polysaccharides (i.e. arabic gum, tragacanth gum, xanthan gum, sodium alginate, chitosan, sodium carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose) were modified using ceric-initiated graft polymerization of acrylonitrile under inert atmosphere. Grafting was confirmed using spectral (FT-IR) proofs. The grafting parameters were determined by conventional methods. Thermal characteristics of the homopolymer-free copolymers were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) under nitrogen atmosphere. The major thermal transitions as well as the activation energy of the major decomposition stages were investigated. The polyacrylonitrile (PAN)-grafted polysaccharides were recognized to be thermally stable more than the corresponding non-grafted substrates, although they begin to decompose at relatively lower temperatures than the non-grafted counterparts. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Yb[C(SiMe3)3]2 initiates the living polymerization of methyl methacrylate (MMA) at −78°C to give the polymer with Mn of 51.0×104 (Mw/Mn=1.1) and high isotacticity (97%) in a quantitative yield. Mixing of the acetone solution of resulting polymer (Mn=16.3×104) with the acetone solution of syndiotactic poly(MMA) (Mn=15.7×104) prepared by the (C5Me5)2SmMe(THF) initiator produces desired stereocomplex in high yield bearing very high Tm whose tensile modulus is higher than the respective isotactic and syndiotactic poly(MMA)s. Yb[C(SiMe3)3]2 also generated isotactic (98%) poly[2-(dimethylamino)ethyl methacrylate] (DMEMA), and (C5Me5)2SmMe(THF) affords the syndiotactic (97%) polymer in high yields. The combination of isotactic poly(MMA)-block-poly(DMEMA) (97/3) and syndiotactic poly(MMA)-block-poly(DMEMA) (97/3) provides the amphiphathic stereocomplex. In sharp contrast to the catalysis of Yb[C(SiMe3)3]2 in toluene, the addition of THF or HMPA resulted in the formation of syndio-rich poly(MMA).  相似文献   

18.
The thermal stability of poly(methyl methacrylate) (PMMA) photopolymerised using colloidal cadmium sulphide as the photoinitiator was studied by thermogravimetry (TG) and differential TG (DTG).The thermal stability of the CdS initiated PMMA was greater than that of conventional radically polymerised PMMA and approached that of anionically prepared PMMA. The DTG curve of the CdS initiated PMMA was a composite of four peaks, three of which correspond to the three peaks observed in the DTG curve of standard radically prepared PMMA. It is suggested that the additional peak arises from a new mode of depolymerisation initiation, that is, from chain end unsaturation introduced into the polymer chain during polymerisation initiation with the colloidal CdS.  相似文献   

19.
Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with butadiene-methyl methacrylate diblock copolymers has been investigated by transmission electron microscopy. When the diblock copolymers are added to the blends, the size of PB particles decreases and their size distribution gets narrower. In PB/PMMA7.6K blends with P(B-b-MMA)25.2K as a compatibilizer, most of micelles exist in the PMMA phase. However, using P(B-b-MMA)38K as a compatibilizer, the micellar aggregation exists in PB particles besides that existing in the PMMA phase. The core of a micelle in the PMMA phase is about 10 nm. In this article the influences of temperature and homo-PMMA molecular weight on compatibilization were also examined. At a high temperature PB particles in blends tend to agglomerate into bigger particles. When the molecular weight of PMMA is close to that of the corresponding block of the copolymer, the best compatibilization result would be achieved. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 85–93, 1998  相似文献   

20.
The micellization properties of well‐defined block copolymers of styrene and decyl methacrylate (SDMA) were studied in two different solvents, methyl acetate (MAc) selective for the polystyrene (PS) block and dodecane, selective for the poly(decyl methacrylate) (PDMA) block. The results were compared with those obtained, in the same solvents, from block copolymers of styrene and stearyl methacrylate (SSMA). In MAc, SDMA copolymers with a decyl methacrylate (DMA) content of 15% or less formed unimolecular micelles, whereas those with a content of 18.5% or higher formed multimolecular micelles. The degrees of association were lower than the corresponding SSMA samples. In dodecane, SDMA form large, monodisperse, spherical, and thermally stable micelles with degrees of association higher than the corresponding SSMA samples. The different behaviors can be attributed to the steric hindrance effect and the ability of the long alkyl groups of the polymethacrylate, MA blocks to crystallize. When the MA blocks are in the soluble corona of the micelles, the steric hindrance effect prevails, thus leading to higher degrees of association for the less bulky alkyl group. In the case where the MA block is in the insoluble core of the micelles, the higher the tendency for crystallization the higher the degree of association. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4177–4188, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号